Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 32(10): 18150-18160, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38858978

RESUMO

Perineuronal nets (PNNs) are important functional structures on the surface of nerve cells. Observation of PNNs usually requires dyeing or fluorescent labeling. As a network structure with a micron grid and sub-wavelength thickness but no special optical properties, quantitative phase imaging (QPI) is the only purely optical method for high-resolution imaging of PNNs. We proposed a Scattering Quantitative Interference Imaging (SQII) method which measures the geometric rather than transmission or reflection phase during the scattering process to visualize PNNs. Different from QIP methods, SQII method is sensitive to scattering and not affected by wavelength changes. Via geometric phase shifting method, we simplify the phase shift operation. The SQII method not only focuses on interference phase, but also on the interference contrast. The singularity points and phase lines of the scattering geometric phase depict the edges of the network structure and can be found at the valley area of the interference contrast parameter SINDR under different wavelengths. Our SQII method has its unique imaging properties, is very simple and easy to implement and has more worth for promotion.

2.
Nanomaterials (Basel) ; 14(5)2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38470752

RESUMO

A high-performance resonant metasurface is rather promising for diverse application areas such as optical sensing and filtering. Herein, a metal-insulator-metal (MIM) optical sensor with merits of a high quality-factor (Q-factor), multiple operating bands, and high spectrum contrast is proposed using plasmonic square bracket dimer metasurface. Due to the complex square bracket itself, a dimer structure of two oppositely placed square brackets, and metasurface array configuration, multiple kinds of mode coupling can be devised in the inner and outer elements within the metasurface, enabling four sensing channels with the sensitivities higher than 200 nm/RIU for refractive index sensing. Among them, the special sensing channel based on the reflection-type surface lattice resonance (SLR) mechanism has a full width at half maximum (FWHM) of only 2 nm, a high peak-to-dip signal contrast of 0.82, a high Q-factor of 548, and it can also behave as a good sensing channel for the thickness measurement of the deposition layer. The multi-band sensor can work normally in a large refractive index or thickness range, and the number of resonant channels can be further increased by simply breaking the structural symmetry or changing the polarization angle of incident light. Equipped with unique advantages, the suggested plasmonic metasurface has great potential in sensing, monitoring, filtering, and other applications.

3.
Appl Opt ; 63(3): 624-635, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38294373

RESUMO

Light propagation wavefront and photon composition variations occur when the beam encounters acoustic waves, bringing mechanical and chemical inhomogeneity-induced light-intensity modulation, while phase variations, which carry more information about the acoustic-optical coupling in the medium, are often overlooked. This paper investigates the coupling of the light beam with the propagating ultrasound and the polarization aberration of the optical wave induced by the ultrasound. A model was developed to express the variation of the ultrasound-induced polarization aberration (UIPA). The ultrasound-induced refractive index variation of the sample was observed in both the simulation and experiments. The phase differences in various ultrasound states (valley dominant state, peak dominant state) are characterized in detail. The UIPA expressed in the phase space provides a way to quantify multidimensional polarization information of the ultrasound-tagged optical waves and allows refraction-sensitive polarization parametric imaging, which may be exploited for directional high-contrast photoacoustic imaging with ultrasound tagging.

4.
J Fluoresc ; 34(2): 479-500, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37382834

RESUMO

The increasing viral species have ruined people's health and the world's economy. Therefore, it is urgent to design bio-responsive materials to provide a vast platform for detecting a different family's passive or active virus. One can design a reactive functional unit for that moiety based on the particular bio-active moieties in viruses. Nanomaterials as optical and electrochemical biosensors have enabled better tools and devices to develop rapid virus detection. Various material science platforms are available for real-time monitoring and detecting COVID-19 and other viral loads. In this review, we discuss the recent advances of nanomaterials in developing the tools for optical and electrochemical sensing COVID-19. In addition, nanomaterials used to detect other human viruses have been studied, providing insights for developing COVID-19 sensing materials. The basic strategies for nanomaterials develop as virus sensors, fabrications, and detection performances are studied. Moreover, the new methods to enhance the virus sensing properties are discussed to provide a gateway for virus detection in variant forms. The study will provide systematic information and working of virus sensors. In addition, the deep discussion of structural properties and signal changes will offer a new gate for researchers to develop new virus sensors for clinical applications.


Assuntos
Técnicas Biossensoriais , COVID-19 , Nanoestruturas , Humanos , SARS-CoV-2 , COVID-19/diagnóstico , Técnicas Eletroquímicas , Nanoestruturas/química , Técnicas Biossensoriais/métodos
5.
Opt Express ; 31(25): 41569-41581, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38087552

RESUMO

Using polarization surface plasmon resonance (SPR) imaging as a sensor has the advantage of large throughput in detection, but its sensitivity has always been inferior to other SPR sensors. The high contrast of the two polarization parameters' images related to scattering determines the high sensitivity of this new polarization SPR imaging sensor. It provides a new direction for solving the issue of low sensitivity in polarization SPR imaging. The sensor system was optimized by numerical simulation, whilst the baseline noise and sensitivity of the system were obtained by saline solution and virus detection. When the reflective index of the NaCl solution is within the range of 1.3331 to 1.36, the average sensitivity can reach 9300 RIU-1, and the maximum sensitivity can reach 13000 RIU-1. Using this new polarization SPR imaging sensor, the H1N1 virus was differentiated, showing its promising application potential within the field of biomedicine.

6.
Opt Express ; 31(24): 39927-39940, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38041305

RESUMO

In this paper, four rectangular slits with the same size and regular rotation angle are regarded as the meta-atom, arranged on circular contours, to create plasmonic vortex lenses (PVLs) solely based on the geometric phase. These PVLs can achieve the same purpose of exciting surface plasmon polariton (SPP) vortices with arbitrary combinations of topological charge (TC) when illuminated by circularly polarized (CP) light with different handedness as the traditional PVLs. Furthermore, they can generate SPP vortices with different TCs and specific constant or varying electric-field intensities when excited by linearly polarized (LP) light, which marks the first instance of this phenomenon solely through geometric phase manipulation. The TC can be dynamically altered by controlling the polarization order of the incident vector beam. These PVLs not only possess advantages in terms of device miniaturization and the creation of a more uniform vortex field, as compared to PVLs based on the transmission phase, but also offer a more straightforward design process in comparison to traditional structures that rely solely on the geometric phase.

7.
Opt Lett ; 48(22): 6040-6043, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37966784

RESUMO

In this Letter, an ultracompact silicon-based waveguide crossing for dual polarizations is proposed and experimentally demonstrated using subwavelength-hole-assisted multimode interference couplers. Thanks to the flexible and easy dispersion engineering in the introduced subwavelength-hole-assisted multimode interference couplers, the reduced and equal beat lengths for dual polarizations are accessible via careful parametric optimization, consequently enabling a substantially reduced device size. Experimental results indicate that the proposed crossing (13.6 × 13.6 µm2 in size) features a low insertion loss of 1.03 dB (0.76 dB) and low crosstalk of -32.5 dB (-37.8 dB) at a central wavelength of 1550 nm for TE (TM) mode, with a broad bandwidth of ∼80 nm for crosstalk of <-18 dB.

8.
Photoacoustics ; 32: 100543, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37636546

RESUMO

Most photoacoustic computed tomography (PACT) systems usually ignore the anisotropy of the tissue absorption coefficient, which will lead to the lack of information in reconstructed images. In this work, the effect is addressed of the possible optical absorption anisotropy of tissue on PACT images. The functional relationship is derived between the photoacoustic response and the polarization angle of the excitation light. An adaptive polarized light photoacoustic imaging (AP-PACT) approach is proposed and shown to make up for the lack of imaging information and achieve optimal image contrast when imaging samples with anisotropic optical absorption, by utilizing the standard deviation of photoacoustic response as the feedback signal in an adaptive data acquisition process. The method is implemented both on phantom and in vitro experiments, which show that AP-PACT can recover anisotropic absorption-related information from reconstructed images and thus significantly improve their quality.

9.
Biomed Phys Eng Express ; 9(5)2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37413980

RESUMO

UNet, and more recently medical image segmentation methods, utilize many parameters and computational quantities to achieve higher performance. However, due to the increasing demand for real-time medical image segmentation tasks, it is important to trade between accuracy rates and computational complexity. To this end, we propose a lightweight multi-scale U-shaped network (LMUNet), a multi-scale inverted residual and an asymmetric atrous spatial pyramid pooling-based network for skin lesion image segmentation. We test LMUNet on multiple medical image segmentation datasets, which show that it reduces the number of parameters by 67X and decreases the computational complexity by 48X while obtaining better performance over the partial lightweight networks.


Assuntos
Processamento de Imagem Assistida por Computador , Dermatopatias , Humanos , Dermatopatias/diagnóstico por imagem
10.
Opt Express ; 31(12): 20034-20048, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37381406

RESUMO

We simulate and demonstrate experimentally an inner-wall grating double slot micro ring resonator (IG-DSMRR) with a center slot ring radius of only 6.72 µm based on the silicon-on-insulator platform. This novel photonic-integrated sensor for optical label-free biochemical analysis boosts the measured refractive index (RI) sensitivity in glucose solutions to 563 nm/RIU with the limit of detection value being 3.7 × 10-6 RIU (refractive index units). The concentration sensitivity for sodium chloride solutions can reach 981 pm/%, with a minimum concentration detection limit of 0.02%. Using the combination of DSMRR and IG, the detection range is enlarged significantly to 72.62 nm, three times the free spectral range of conventional slot micro ring resonators. The measured Q-factor is 1.6 × 104, and the straight strip and double slot waveguide transmission losses are 0.9 dB/cm and 20.2 dB/cm, respectively. This IG-DSMRR combines the advantages of a micro ring resonator, slot waveguide, and angular grating and is highly desirable for biochemical sensing in liquids and gases offering an ultra-high sensitivity and ultra-large measurement range. This is the first report of a fabricated and measured double-slot micro ring resonator with an inner sidewall grating structure.

11.
Appl Opt ; 62(12): 3225-3232, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37133173

RESUMO

This paper proposes a new portable polarization parametric indirect microscopy imaging without a liquid crystal (LC) retarder. The polarization was modulated by a polarizer automatically rotating when the camera took raw images sequentially. A specific mark tagged the polarization states of each camera's snapshot in the optical illumination path. A computer vision portable polarization parametric indirect microscopy imagrecognition algorithm was developed to retrieve the unknown polarization states from each raw camera image to ensure that the right polarization modulation states were used in the PIMI processing algorithm. The system's performance was verified by obtaining PIMI parametric images of human facial skin. The proposed method avoids the error problem caused by the LC modulator and significantly reduces the whole system's cost.

12.
Biomed Opt Express ; 14(3): 1216-1227, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36950230

RESUMO

Quantitative detection of virus-like particles under a low concentration is of vital importance for early infection diagnosis and water pollution analysis. In this paper, a novel virus detection method is proposed using indirect polarization parametric imaging method combined with a plasmonic split-ring nanocavity array coated with an Au film and a quantitative algorithm is implemented based on the extended Laplace operator. The attachment of viruses to the split-ring cavity breaks the structural symmetry, and such asymmetry can be enhanced by depositing a thin gold film on the sample, which allows an asymmetrical plasmon mode with a large shift of resonance peak generated under transverse polarization. Correspondingly, the far-field scattering state distribution encoded by the attached virus exhibits a specific asymmetric pattern that is highly correlated to the structural feature of the virus. By utilizing the parametric image sinδ to collect information on the spatial photon state distribution and far-field asymmetry with a sub-wavelength resolution, the appearance of viruses can be detected. To further reduce the background noise and enhance the asymmetric signals, an extended Laplace operator method which divides the detection area into topological units and then calculates the asymmetric parameter is applied, enabling easier determination of virus appearance. Experimental results show that the developed method can provide a detection limit as low as 56 vp/150µL on a large scale, which has great potential in early virus screening and other applications.

13.
Opt Lett ; 48(2): 359-362, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36638457

RESUMO

We report, to the best of our knowledge, the first demonstration of a 1555-nm stepped-height ridge waveguide polarization mode converter monolithically integrated with a sidewall grating distributed-feedback (DFB) laser using the identical epitaxial layer scheme. The device shows stable single longitudinal mode (SLM) operation with the output light converted from TE to TM polarization with an efficiency of >94% over a wide range of DFB injection currents (IDFB) from 140 mA to 190 mA. The highest TM mode purity of 98.2% was obtained at IDFB = 180 mA. A particular advantage of this device is that only a single step of metalorganic vapor-phase epitaxy and two steps of III-V material dry etching are required for the whole integrated device fabrication, significantly reducing complexity and cost.

14.
Biomed Opt Express ; 13(9): 4621-4636, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36187257

RESUMO

In biomedical imaging, photoacoustic computed tomography (PACT) has recently gained increased interest as this imaging technique has good optical contrast and depth of acoustic penetration. However, a spinning blur will be introduced during the image reconstruction process due to the limited size of the ultrasonic transducers (UT) and a discontinuous measurement process. In this study, a damping UT and adaptive back-projection co-optimization (CODA) method is developed to improve the lateral spatial resolution of PACT. In our PACT system, a damping aperture UT controls the size of the receiving area, which suppresses image blur at the signal acquisition stage. Then, an innovative adaptive back-projection algorithm is developed, which corrects the undesirable artifacts. The proposed method was evaluated using agar phantom and ex-vivo experiments. The results show that the CODA method can effectively compensate for the spinning blur and eliminate unwanted artifacts in PACT. The proposed method can significantly improve the lateral spatial resolution and image quality of reconstructed images, making it more appealing for wider clinical applications of PACT as a novel, cost-effective modality.

15.
Appl Opt ; 61(2): 546-553, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35200896

RESUMO

The ability to identify virus particles is important for research and clinical applications. Because of the optical diffraction limit, conventional optical microscopes are generally not suitable for virus particle detection, and higher resolution instruments such as transmission electron microscopy (TEM) and scanning electron microscopy (SEM) are required. In this paper, we propose a new method for identifying virus particles based on polarization parametric indirect microscopic imaging (PIMI) and deep learning techniques. By introducing an abrupt change of refractivity at the virus particle using antibody-conjugated gold nanoparticles (AuNPs), the strength of the photon scattering signal can be magnified. After acquiring the PIMI images, a deep learning method was applied to identify discriminating features and classify the virus particles, using electron microscopy (EM) images as the ground truth. Experimental results confirm that gold-virus particles can be identified in PIMI images with a high level of confidence.


Assuntos
Aprendizado Profundo , Nanopartículas Metálicas , Ouro , Microscopia Eletrônica de Transmissão , Vírion
16.
Front Oncol ; 11: 633357, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34336645

RESUMO

The high-grade glioma is characterized by cell heterogeneity, gene mutations, and poor prognosis. The deletions and mutations of the tumor suppressor gene PTEN (5%-40%) in glioma patients are associated with worse survival and therapeutic resistance. Characterization of unique prognosis molecular signatures by PTEN status in glioma is still unclear. This study established a novel risk model, screened optimal prognostic signatures, and calculated the risk score for the individual glioma patients with different PTEN status. Screening results revealed fourteen independent prognostic gene signatures in PTEN-wt and three in the -50PTEN-mut subgroup. Moreover, we verified risk score as an independent prognostic factor significantly correlated with tumor malignancy. Due to the higher malignancy of the PTEN-mut gliomas, we explored the independent prognostic signatures (CLCF1, AEBP1, and OS9) for a potential therapeutic target in PTEN-mut glioma. We further separated IDH wild-type glioma patients into GBM and LGG to verify the therapeutic target along with PTEN status, notably, the above screened therapeutic targets are also significant prognostic genes in both IDH-wt/PTEN-mut GBM and LGG patients. We further identified the small molecule compound (+)-JQ1 binds to all three targets, indicating a potential therapy for PTEN-mut glioma. In sum, gene signatures and risk scores in the novel risk model facilitate glioma diagnosis, prognosis prediction, and treatment.

17.
Opt Lett ; 46(16): 3998-4001, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34388795

RESUMO

Shapes from the diffuse polarization method effectively realize the three-dimensional (3D) reconstruction of the object surface by using the polarization information of the diffuse reflection light. However, due to the nonconvexity of the particle surface, the reconstruction often falls into a local optimal solution. Indeed, the depth image obtained by the scanning electron microscope has serious stripe noise, which distorts the surface texture of the particle. In this Letter, a variable exponential function regularization method is proposed to realize 3D reconstruction for the nonconvexity of the surface and inclination of the particles. We focus on the gradient unintegrability caused by the skew and surface undulation of the specimen. An adaptive 3D reconstruction method is proposed based on variable exponential function regularization to fit the surface function of the particle. Experimental results of finite-difference time-domain simulations and actual imaging demonstrate the effectiveness of the method.

18.
Appl Opt ; 60(8): 2141-2149, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33690308

RESUMO

Vibrations cause many problems such as displacement, distortion, and defocusing in microscopic imaging systems. Because vibration errors are random in direction, amplitude, and frequency, it is not known which aspect of the image quality will be affected by these problems and to what extent. Polarization parametric indirect microscopic imaging (PIMI) is a technique that records polarization parameters in a conventional wide-field reflection microscope using polarization modulation of the illumination beam and additional data analysis of the raw images. This indirect imaging technique allows the spatial resolution of the system to be improved. Here, the influence of vibration on the image sharpness and spatial resolution of a PIMI system is analyzed theoretically and experimentally. Degradation in the sharpness of PIMI images is quantified by means of the modulation transfer function and deterioration in the effective spatial resolution by the Fourier ring correlation. These results show that the quality of PIMI images can be improved significantly using vibration isolation.

19.
Opt Express ; 29(2): 1221-1231, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33726341

RESUMO

Optical-matter interactions and photon scattering in a sub-wavelength space are of great interest in many applications, such as nanopore-based gene sequencing and molecule characterization. Previous studies show that spatial distribution features of the scattering photon states are highly sensitive to the dielectric and structural properties of the nanopore array and matter contained on or within them, as a result of the complex optical-matter interaction in a confined system. In this paper, we report a method for shape characterization of subwavelength nanowells using photon state spatial distribution spectra in the scattering near field. Far-field parametric images of the near-field optical scattering from sub-wavelength nanowell arrays on a SiN substrate were obtained experimentally. Finite-difference time-domain simulations were used to interpret the experimental results. The rich features of the parametric images originating from the interaction of the photons and the nanowells were analyzed to recover the size of the nanowells. Experiments on nanoholes modified with Shp2 proteins were also performed. Results show that the scattering distribution of modified nanoholes exhibits significant differences compared to empty nanoholes. This work highlights the potential of utilizing the photon status scattering of nanowells for molecular characterization or other virus detection applications.


Assuntos
Microscopia de Polarização/instrumentação , Nanoestruturas/química , Espalhamento de Radiação , Compostos de Silício/química , Desenho de Equipamento , Luz , Fótons
20.
Nanoscale Adv ; 3(24): 6882-6887, 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36132363

RESUMO

A parallel four-quadrant sensing method utilizing a specially designed gold nanodot array is created for sensing virus-like particles with a sub-diffraction limit size (∼100 nm) in a wide-field image. Direct label-free sensing of viruses using multiple four-quadrant sensing channels in parallel in a wide-field view enables the possibility of high-throughput onsite screening of viruses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...