Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 14(18): 6777-6788, 2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35362488

RESUMO

Graphene oxide (GO) has been proved to be a potential reinforcement. In this paper, 0.3 wt%, 0.6 wt%, and 1.0 wt% GO reinforced Fe22Co24Cr20Ni23Al11 high-entropy alloy (HEA) composites and pure HEA were synthesized by spark plasma sintering (SPS) to improve the surface properties of HEA. The surface properties including hardness and wear resistance of various samples were comparatively investigated. The experimental results indicated that the surface hardness and wear resistance were enhanced as the content of GO increased (when the GO content was less than 0.6 wt%), which were attributed to the grain refinement strengthening and lubrication effect of GO. However, as the content of GO incrementally increased to 1.0 wt%, the hardness exhibited a descending trend and the coefficient of friction (COF) increased, resulting from the agglomeration of GO. Accordingly, the residual indentation and wear track of HEA/0.6 wt% GO exhibited a minimum depth, which further confirmed the results of the nanoindentation and wear tests.

2.
Front Microbiol ; 13: 826829, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35250944

RESUMO

Acidiferrobacter spp. are facultatively anaerobic acidophiles that belong to a distinctive Acidiferrobacteraceae family, which are similar to Ectothiorhodospiraceae phylogenetically, and are closely related to Acidithiobacillia class/subdivision physiologically. The limited genome information has kept them from being studied on molecular taxonomy and environmental adaptation in depth. Herein, Af. thiooxydans ZJ was isolated from acid mine drainage (AMD), and the complete genome sequence was reported to scan its genetic constitution for taxonomic and adaptative feature exploration. The genome has a single chromosome of 3,302,271 base pairs (bp), with a GC content of 63.61%. The phylogenetic tree based on OrthoANI highlighted the unique position of Af. thiooxydans ZJ, which harbored more unique genes among the strains from Ectothiorhodospiraceae and Acidithiobacillaceae by pan-genome analysis. The diverse mobile genetic elements (MGEs), such as insertion sequence (IS), clustered regularly interspaced short palindromic repeat (CRISPR), prophage, and genomic island (GI), have been identified and characterized in Af. thiooxydans ZJ. The results showed that Af. thiooxydans ZJ may effectively resist the infection of foreign viruses and gain functional gene fragments or clusters to shape its own genome advantageously. This study will offer more evidence of the genomic plasticity and improve our understanding of evolutionary adaptation mechanisms to extreme AMD environment, which could expand the potential utilization of Af. thiooxydans ZJ as an iron and sulfur oxidizer in industrial bioleaching.

3.
Nano Lett ; 22(1): 453-460, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34964352

RESUMO

Substantial improvement of rotation driving accuracy is urgently needed and facing challenges. Miniature bidirectional rotary actuators with high-precision and controllable fallback rate require novel driving principles. Here, on the basis of a proposed biomimetic stick-slip motion principle, a novel piezoelectric-thermal coupling bidirectional rotary actuator was developed. The integrated mantis grasping leglike biomimetic claws and heating rods could realize the clockwise macroscopic rotation and anticlockwise macroscopic fallback of a cylindrical rotator, generated by piezoelectric stick-slip and thermal expansion, respectively. The rotation fallback was effectively inhibited at relatively lower frequencies and higher voltages, as a slight fallback rate of 0.095 was confirmed in term of 0.5 Hz and 80 V. An extraordinary piezoelectric-driven macroscopic rotation resolution of 0.2 µrad and thermal-induced microscopic resolution of 0.00073°/°C were experimentally revealed with the aid of real-time observation of the clockwise slow sticking and anticlockwise instantaneous slipping processes by using three-dimensional optical imaging.


Assuntos
Biomimética , Movimento (Física)
4.
Sci Total Environ ; 798: 149186, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34375243

RESUMO

Re-inoculation was an effective way to improve bioleaching efficiency by enhancing the synergetic effects of biogenic Fe3+ coupling with S0 oxidation. However, the complex microbial interactions after re-inoculation have received far less attention, which was crucial to the bioleaching performances. Herein, the enriched ferrous oxidizers (FeO) or sulfur oxidizers (SO) were inoculated to chalcopyrite microcosm, then they were crossly re-inoculated again to characterize the interspecific interaction patterns. The results showed that the dominant species in Fe groups were Acidithiobacillus ferrooxidans, while A. thiooxidans predominated in S groups. Introducing FeO resulted in a great disturbance by shifting the community diversity and evenness significantly (p < 0.05). In comparison, the communities intensified by SO maintained the original composition and structures. Microbial networks were constructed positively and modularly. The networks intensified by FeO were less connected and complex with less nodes and edges, but showed faster responses to the re-inoculation disturbance reflected by shorter average path length. Interestingly, the genus Leptospirillum were identified as keystones in S groups, playing critical roles in iron-oxidizing with lots of sulfur oxidizers. The introduced sulfur oxidizers enhanced microbial cooperation, formed robust community with strong bio-dissolution capability, and harbored the highest bioleaching efficiency. These findings improved our understanding about the acidophiles interactions, which drive community functional responses to the re-inoculated bioleaching process.


Assuntos
Acidithiobacillus , Cobre , Oxirredução , Enxofre
5.
Sheng Wu Gong Cheng Xue Bao ; 36(12): 2674-2684, 2020 Dec 25.
Artigo em Chinês | MEDLINE | ID: mdl-33398963

RESUMO

By analyzing the shift of microbial communities under different iron/sulfur ratios, the response of metallurgical microorganisms to energy substrates was investigated based on molecular ecological networks. High-throughput sequencing of microbial samples from different domesticated batches was conducted to analyze the changes in community composition, alpha and beta diversity. Based on the molecular ecological network, the interactions between microorganisms under different iron/sulfur ratios were explored. Keystones were identified to analyze the community response to energy substrates. In the process of domestication based on different energy substrates, the dominant species in the in iron-rich and sulfur-less community were Acidithiobacillus ferrooxidans and A. ferriphilus. A. thiooxidans accounted for up to 90% in the sulfur-rich and iron-less community after 3 domesticating batches. The results of alpha and beta diversity analysis show that the domestication process of sulfur-rich and iron-less substrates reduced the diversity of microbial communities. Molecular ecological network analysis shows that the keystones were all rare species with low abundance. During the domestication by sulfur-rich and iron-less energy substrates, the bacterial species had a closer symbiotic relationship and the community was more stable. Through this domestication experiment, the impact of different energy substrates on microbial aggregation was clarified. Domesticating metallurgical microorganisms by using sulfur-rich and iron-less energy substrates made the microbial colonies to be more stable, which was conducive to the oxidation of iron and sulfur, promoting the dissolution of sulfide minerals. Our findings provide a reference for the directional domestication of metallurgical microorganisms.


Assuntos
Acidithiobacillus , Acidithiobacillus/genética , Ferro , Minerais , Oxirredução , Enxofre
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...