Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Aquac Nutr ; 2023: 4912141, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38077279

RESUMO

The aim of this trial was to investigate the effects of apple polyphenols (AP) and taurine (TA) on the growth performance, tissue morphology, and lipid and glucose metabolism in rice field eel fed diets with high oxidized fish oil (OFO). A 10-week feeding experiment was conducted using juveniles (initial body weight 16.66 ± 0.02 g) fed five different diets. Three diets were formulated with various levels of OFO at 9.5, 600, and 800 meq·kg-1 and named as Control, POV600, and POV800 diet, respectively. The other two diets were POV600 and POV800 supplemented with 0.5% AP and 0.2% TA, respectively. Compared to the Control group, only the eels fed POV800 exhibited an increase in weight gain and specific growth rate along with a reduction in feed conversion ratio. AP and TA did not affect growth performance; juveniles fed AP, however, showed a decrease in liver weight. Both POV600 and POV800 decreased nuclei number and increased vacuoles size in the liver. POV800 damaged the intestinal structure integrity and reduced goblet cells number. AP repaired the liver damage on nuclei number and vacuoles size in fish fed with POV600 diet, while TA mitigated intestinal histopathological damage on intact structure and goblet cells number. The mRNA expression level of liver ampkα in fish fed AP was upregulated, while dietary TA upregulated the mRNA expression levels of liver ampkα and accα. In the muscle, POV600 downregulated mRNA expression levels of accα, cpt1, and lipin, whereas POV800 upregulated mRNA expression levels of accα, pparα, and lipin. Dietary AP and TA could counteract the effects of POV600 and POV800 diet on muscle lipid metabolism. Both POV600 and POV800 diets upregulated mRNA expression levels of liver pck1 and gsk3α. AP and TA both downregulated mRNA expression level of liver pck1, while only TA downregulated the expression of liver gsk3α. AP increased the mRNA expression level of gsk3α in muscle. In summary, inclusion of AP and TA did not affect growth performance but showed a potential to alleviate liver or intestinal damages induced by a high OFO diet. Dietary AP and TA were also found to regulate mRNA expression of genes related to lipid and glucose metabolism.

2.
Front Physiol ; 14: 1254992, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37680772

RESUMO

To understand the effects of vitamin A on lipid deposition in rice field eels, integrated liver transcriptome and metabolome were conducted and the changes in the genes and metabolites were assessed. Three groups of rice field eel were fed with 0, 200, and 16,000 IU/kg vitamin A supplementations in their diets for 70 days. The total lipid content in the whole body of the rice field eels was significantly increased with the vitamin A supplementations (p < 0.05). Comparative transcriptome analysis revealed 14 pathways and 46 differentially expressed genes involved in lipid metabolism. Sphingolipid metabolism, glycerolipid metabolism, primary bile acid biosynthesis and steroid hormone biosynthesis were significantly enriched pathways. In these pathways, three differential genes phospholipid phosphatase 1a (PLPP1a), phospholipid phosphatase 2b (PLPP2b), cytochrome P450 21a2 (CYP21a2) were consistent with the change trend of lipid content, and the other three differential genes aldo-keto reductase family 1 member D1 (AKR1D1), uridine diphosphate glucuronic acid transferase 1a1 (UGT1a1), cytochrome P450 1a (CYP1a) were opposite. Metabolomic analysis revealed that primary bile acid biosynthesis, sphingolipid metabolism, steroid hormone biosynthesis and biosynthesis of unsaturated fatty acids were all critical for rice field eel metabolic changes in response to vitamin A. Six important differential metabolites (eicosapentaenoic acid, sphinganine, 11-beta-hydroxyprogesterone, hydroxyeicosatetraenoic acid, cholic acid, and glycochenodeoxycholate) were identified and have provided new insights into how vitamin A regulates lipid deposition. Integrated transcriptome and metabolome analyses revealed that primary bile acid biosynthesis was the only remarkably enriched pathway in both the transcriptome and metabolome while that sphingosine was the main metabolite. Based on the above results, we have concluded that vitamin A promotes lipid deposition in the rice field eel through the primary bile acid synthesis pathway, and lipid deposits are widely stored in cell membranes, mainly in the form of sphingosine. These results will provide reference data to help improve our understanding of how vitamin A regulates lipid metabolism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...