Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2402465, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38728587

RESUMO

Aggressive nature of colon cancer and current imprecise therapeutic scenarios simulate the development of precise and effective treatment strategies. To achieve this, a tumor environment-activated photosensitized biomimetic nanoplatform (PEG2000-SiNcTI-Ph/CpG-ZIF-8@CM) is fabricated by encapsulating metal-organic framework loaded with developed photosensitizer PEG2000-SiNcTI-Ph and immunoadjuvant CpG oligodeoxynucleotide within fusion cell membrane expressing programmed death protein 1 (PD-1) and cluster of differentiation 47 (CD47). By stumbling across, systematic evaluation, and deciphering with quantum chemical calculations, a unique attribute of tumor environment (low pH plus high concentrations of adenosine 5'-triphosphate (ATP))-activated photodynamic effect sensitized by long-wavelength photons is validated for PEG2000-SiNcTI-Ph/CpG-ZIF-8@CM, advancing the precision of cancer therapy. Moreover, PEG2000-SiNcTI-Ph/CpG-ZIF-8@CM evades immune surveillance to target CT26 colon tumors in mice mediated by CD47/signal regulatory proteins α (SIRPα) interaction and PD-1/programmed death ligand 1 (PD-L1) interaction, respectively. Tumor environment-activated photodynamic therapy realized by PEG2000-SiNcTI-Ph/CpG-ZIF-8@CM induces immunogenic cell death (ICD) to elicit anti-tumor immune response, which is empowered by enhanced dendritic cells (DC) uptake of CpG and PD-L1 blockade contributed by the nanoplatform. The photodynamic immunotherapy efficiently combats primary and distant CT26 tumors, and additionally generates immune memory to inhibit tumor recurrence and metastasis. The nanoplatform developed here provides insights for the development of precise cancer therapeutic strategies.

2.
Bioorg Chem ; 148: 107494, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38797067

RESUMO

Near-infrared (NIR) responsive nanoparticles are an important platform for multimodal phototherapy. Importantly, the simultaneous NIR-triggered photodynamic (PDT) and photothermal (PTT) therapy is a powerful approach to increase the antitumor efficiency of phototherapic nanoparticles due to the synergistic effect. Herein, a boron dipyrromethene (BODIPY)-based amphiphilic dye with enhanced electron donor-acceptor-donor (D-A-D) structure (BDP-AP) was designed and synthesized, which could self-assemble into stable nanoparticles (BDP-AP NPs) for the synergistic NIR-triggered PDT/PTT therapy. BDP-AP NPs synchronously generated singlet oxygen (1O2) and achieved preeminent photothermal conversion efficiency (61.42%). The in vitro and in vivo experiments showed that BDP-AP NPs possessed negligible dark cytotoxicity and infusive anticancer performance. BDP-AP NPs provide valuable guidance for the construction of PDT/PTT-synergistic NIR nanoagents to improve the efficiency of photoinduced cancer therapy in the future.


Assuntos
Antineoplásicos , Compostos de Boro , Ensaios de Seleção de Medicamentos Antitumorais , Raios Infravermelhos , Fotoquimioterapia , Fármacos Fotossensibilizantes , Terapia Fototérmica , Compostos de Boro/química , Compostos de Boro/farmacologia , Compostos de Boro/síntese química , Humanos , Animais , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/síntese química , Camundongos , Estrutura Molecular , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Nanopartículas/química , Sobrevivência Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Estrutura-Atividade , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/síntese química , Relação Dose-Resposta a Droga , Neoplasias Experimentais/patologia , Neoplasias Experimentais/tratamento farmacológico , Camundongos Endogâmicos BALB C
3.
Iran J Pharm Res ; 22(1): e136238, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38116549

RESUMO

In recent years, metal-organic frameworks (MOFs) have gained attention in the biomedical field, particularly as drug carriers for treating tumors. Therefore, we decided to synthesize a novel benzoic acid Zn-based MOF and study the Zn-based MOFs' drug-delivery properties and the drug-delivery system's anticancer effects. This study successfully synthesized a zinc-based MOF using solvent thermal synthesis. The crystal structure of a Zn-based MOF was investigated using thermogravimetric analysis, X-ray diffraction, and Fourier transform infrared spectroscopy. Subsequently, the results of UV spectrophotometry showed that Doxorubicin was successfully loaded with a loading amount of 33.74%. Furthermore, the drug release experiments demonstrated that the Zn-based MOF was pH-sensitive, releasing more at a pH of 3.8 than at pH 5.8 or 7.4. Finally, the Zn-based MOF loaded with drugs exhibited high antitumor activity against HepG2 cells while demonstrating remarkably low toxicity to normal cells (LO2). Taken together, these results demonstrate that the Zn-based MOF has the potential to serve as a carrier in the field of drug delivery systems.

4.
Environ Res ; 216(Pt 3): 114724, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36343712

RESUMO

In this study, the facile carbothermal reduction method was enforced using urea as dopant to modify the structure and chemical composition of nanoscale zero-valent-iron/biochar hybrid thereby boosting its reduction performance. Through fine-tuning the N-doped amount, the optimal nZVI/N-doped BC was obtained, which exhibited more active sites (nZVI, persistent free radicals (PFRs), pyrrolic-N) and superior electrochemical conductivity. With these blessings, the electrons originating from galvanic cell reaction could zip along the highway within the hybrid. Taking nitrobenzene (NB) as the target pollutant, the quantitative analysis revealed that the NB reduction and adsorption removal efficiency were dramatically improved by 2.42 and 2.78 times, respectively. What's more, combining the in-situ experimental detection and theoretical calculations, unexpected NB reductive multipath with respect to PFRs and pyrrolic-N accelerating the Fe3+/Fe2+ cycle within the nZVI/N-doped BC system was decoded. The enhancement of Fe3+/Fe2+ cycle improved the electron utilization efficiency and maintained the reduction reactivity of the hybrid. This work raised awareness of the mechanisms regarding the reduction performance of nZVI/N-doped BC elevated by N-doped and the pollutant reductive pathway within the system, uncovered the dusty roles of PFRs and N-species during the reduction process.

5.
Free Radic Biol Med ; 193(Pt 2): 638-647, 2022 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-36395954

RESUMO

As an essential micronutrient element in organisms, copper controls a host of fundamental cellular functions. Recently, copper-dependent cell growth and proliferation have been defined as "cuproplasia". Conversely, "cuproptosis" represents copper-dependent cell death, in a nonapoptotic manner. So far, a series of copper ionophores have been developed to kill cancer cells. However, the biological response mechanism of copper uptake has not been systematically analyzed. Based on quantitative proteomics, we revealed the crosstalk between copper stress and cuproptosis in cancer cells, and also explored the feasibility of curcumin as anticancer copper ionophore. Copper stress not only couples with cuproptosis, but also leads to reactive oxygen species (ROS) stress, oxidative damage and cell cycle arrest. In cancer cells, a feedback cytoprotection mechanism involving cuproptosis mediators was discovered. During copper treatment, the activation of glutamine transporters and the loss of Fe-S cluster proteins are the facilitators and results of cuproptosis, respectively. Through copper depletion, glutathione (GSH) blocks the cuproptosis process, rescues the activation of glutamine transporters, and prevents the loss of Fe-S cluster proteins, except for protecting cancer cells from apoptosis, protein degradation and oxidative damage. In addition, the copper ionophore curcumin can control the metabolisms of lipids, RNA, NADH and NADPH in colorectal cancer cells, and also up-regulates positive cuproptosis mediators. This work not only established the crosstalk between copper stress and cuproptosis, but also discolored the suppression and acceleration of cuproptosis by GSH and curcumin, respectively. Our results are significant for understanding cuproptosis process and developing novel anticancer reagents based on cuproptosis.


Assuntos
Apoptose , Curcumina , Cobre , Curcumina/farmacologia , Estudos de Viabilidade , Glutamina , Glutationa , Ionóforos , Proteínas de Membrana Transportadoras , Proteômica
6.
J Colloid Interface Sci ; 612: 308-322, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-34998191

RESUMO

The ternary micro-electrolysis material iron/nickel-carbon (Fe/Ni-AC) with enhanced reducibility was constructed by introducing the trace transition metal Ni based on the iron/carbon (Fe/AC) system and used for the removal of 4-nitrochlorobenzene (4-NCB) in solution. The composition and structures of the Fe/Ni-AC were analyzed by various characterizations to estimate its feasibility as reductants for pollutants. The removal efficiency of 4-NCB by Fe/Ni-AC was considerably greater than that of Fe/AC and iron/nickel (Fe/Ni) binary systems. This was mainly due to the enhanced reducibility of 4-NCB by the synergism between anode and double-cathode in the ternary micro-electrolysis system (MES). In the Fe/Ni-AC ternary MES, zero-iron (Fe0) served as anode involved in the formation of galvanic couples with activated carbon (AC) and zero-nickel (Ni0), respectively, where AC and Ni0 functioned as double-cathode, thereby promoting the electron transfer and the corrosion of Fe0. The cathodic and catalytic effects of Ni0 that existed simultaneously could not only facilitate the corrosion of Fe0 but also catalyze H2 to form active hydrogen (H*), which was responsible for 4-NCB transformation. Besides, AC acted as a supporter which could offer the reaction interface for in-situ reduction, and at the same time provide interconnection space for electrons and H2 to transfer from Fe0 to the surface of Ni0. The results suggest that a double-cathode of Ni0 and AC could drive much more electrons, Fe2+ and H*, thus serving as effective reductants for 4-NCB reduction.


Assuntos
Ferro , Poluentes Químicos da Água , Carvão Vegetal , Eletrodos , Eletrólise , Níquel
7.
Chemosphere ; 289: 133148, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34864010

RESUMO

A porous carbon obtained from cotton/polyester textile wastes was synthesized by the calcium acetate template method. This research studied the effect of preparation conditions and evaluated the characterization of porous carbon, and further explored its formation mechanism. The porous carbon possessed a high specific surface area of 1106.63 m2/g under an optimum condition (pyrolysis temperature = 800 °C, mass ratio of CA: CPW = 1.5:1, pyrolysis time = 1.5 h). It was found that calcium acetate played the role of catalyst to promote the degradation of cotton/polyester textile. CaCO3 and CaO fabricated by calcium acetate acted as the template to generate a mesoporous structure. The generated CO2 etched carbon skeleton to create a large number of micropores. Besides, it was supported as the carbon source to fuse with carbon structures, further consolidating the aromatic structures of porous carbon. The optimized porous carbon has a high adsorption capacity of 506.40 mg/g for tetracycline. And the adsorption data fitted better by the first-pseudo-order model and Langmuir isotherms with an endothermic and spontaneous adsorption process. The cotton/polyester-based porous carbon was a promising economical material for tetracycline.


Assuntos
Carbono , Tetraciclina , Acetatos , Adsorção , Compostos de Cálcio , Porosidade , Têxteis
8.
Bioresour Technol ; 321: 124450, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33264746

RESUMO

The cotton textile was an abundant energy resource while was otherwise treated as waste. In this work, surfactants were used as catalysts in the hydrothermal carbonization (HTC) to transform cotton textile waste (CTW) into clean solid fuel. Furthermore, the conversion mechanisms of hydrothermal products during surfactant-assisted HTC were preliminarily proposed. The results showed that Span 80 and sodium dodecylbenzenesulfonate facilitated the transformation of CTW into bio-oil, while Tween 80 was more conducive to the development of pseudo-lignin, which endowed hydrochars higher energy density and updated the fuel quality and combustion behavior. Therefore, the research presented an effective method to convert CTW to clean solid fuel through the HTC treatment combining with surfactants.


Assuntos
Carbono , Tensoativos , Lignina , Temperatura , Têxteis
9.
Environ Sci Pollut Res Int ; 27(36): 45175-45188, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32779068

RESUMO

Considering the accumulation and high consumption of activating agents, anhydrous ethanol (AE) could be used to dissolve them to improve the dispersion effect, which was an effective way of improving the practical utilization rate. In this study, FeCl2 was dissolved in AE and further impregnated cotton textile waste (CTW) to prepare activated carbons (ACs) by pyrolysis. Afterward, ACs prepared in optimal conditions determined by the orthogonal experiment evaluated the physicochemical properties and adsorption capacities for Cr(VI). The results illustrated that AE greatly increased the dispersion of FeCl2 on CTW, reduced the conventional impregnation dosage, and remarkably improved the activation efficiency. Textural analyses revealed that ACs exhibited excellent porosity properties and graphite carbon structure. FeCl2 catalyzed the decomposition of volatile substances to produce gaseous products and promoted the transformation of amorphous carbon to graphite carbon that was conducive to pore development, followed by the formation of developed micropores and crystal structures. The adsorption performance of ACs was estimated using Cr(VI), and the adsorption was fitted with the pseudo-second-order kinetic and the Langmuir isotherm. Furthermore, the ACs possessed superior magnetization and reusability. Graphical abstract.


Assuntos
Carvão Vegetal , Poluentes Químicos da Água , Adsorção , Cinética , Porosidade , Pirólise , Têxteis , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...