Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 7: 874, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27375594

RESUMO

In order to explore the relationship between different antibiotic dosing regimens and selective enrichment of resistant strains, tissue-cage infection model was established in rabbits to study relationship between cefquinome pharmacokinetic/pharmacodynamic parameters and the change of susceptibility of Staphylococcus aureus (S. aureus). In this model, above 10(8) CFU/mL of S. aureus culture were exposed to cefquinome concentrations below the MIC99 (the minimal concentration that inhibits colony formation by 99% in vitro, 0.3 µg/mL), between the MIC99 and the MPC (the mutant prevent concentration in vitro, 1.6 µg/mL), and above the MPC after intramuscular injection with cefquinome at doses of 4, 8, 16, and 32 mg/kg of body weight (bw) once daily for 5 days or 4, 8, 16, and 24 mg/kg of bw twice daily for 2.5 days. Samples of tissue-cage fluid were collected from the tissue-cage at 2, 4, 6, 8, 10, 12, 24 h after each dosing (one dosing daily) or at 2, 4, 6, 8, 10, and 12 h (two dosing daily). Cefquinome concentration, susceptibility of S. aureus to cefquinome, and bacterial numbers at the infected site were monitored. The MICs of S. aureus and the fraction of resistant bacteria both increased when cefquinome concentrations fluctuated between the MIC99 and MPC. Resistant bacteria were selected in vivo when %T > MPC was < 58% of administration interval or %T > MIC99 was ≥70% of administration interval. These findings demonstrate that low-level, cefquinome-resistant S. aureus were selected predominantly when drug concentrations fell inside a concentration window in in vivo model, which was evidenced by pulsed-field gel electrophoresis. The selection of resistant bacteria arose from both susceptible bacteria being killed and resistant bacteria re-growth. Keeping drug concentrations above the MPC for ≥58% of administration interval provides a strategy to achieve effective antibacterial activity and minimize the emergence of resistance to cefquinome.

2.
BMC Vet Res ; 11: 169, 2015 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-26209108

RESUMO

BACKGROUND: In order to provide some basis for effective dosage regimens that optimize efficacy with respect to bacteriological and clinical cures, the in vivo activity of cefquinome against a clinical Escherichia coli (E.coli) strain (the minimum inhibitory concentration value for this strain equals to the MIC90 value of 0.25 µg/ml for 210 E.coli strains isolated from pigs) was investigated by using a piglet tissue-cage infection model. The aim was to elucidate the pharmacokinetic/pharmacodynamics (PK/PD) index associated with cefquinome efficacy, and then to identify the magnitude of the PK/PD parameter required for different degree of efficacy in clinical treatment. RESULTS: Tissue-cage infection model was established in piglets, and then the animals received intramuscular injection of cefquinome twice a day for 3 days to create a range of different drug exposures. The tissue-cage fluid was collected at 1, 3, 6, 9 and 12 h after every drug administration for drug concentrationdetermination and bacteria counting. Different cefquinome regimens produced different percentages of time during that drug concentrations exceeded the MIC (%T > MIC), ranging from 0% to 100%. Cefquinome administration at 0.2, 0.4, 0.6, 0.8, 1, 2 and 4 mg/kg reduced the bacterial count (log10 CFU/mL) in tissue-cage fluid by -1.00 ± 0.32, -1.83 ± 0.08, -2.33 ± 0.04, -2.96 ± 0.16, -2.99 ± 0.16, -2.93 ± 0.11, -3.43 ± 0.18, respectively. The correlation coefficient of the PK/PD index with antibacterial effect of the drug was 0.90 for %T > MIC, 0.62 for AUC0-12/MIC, and 0.61 for Cmax/MIC, suggesting the most important PK/PD parameter was %T > MIC. A inhibitory form of sigmoid maximum effect (Emax) model was used to estimate %T > MIC, and the respective values required for continuous 1/6-log drop, 1/3-log drop and 1/2-log drop of the clinical E.coli count during each 12 h treatment period were 3.97%, 17.08% and 52.68%. CONCLUSIONS: The data derived from this study showed that cefquinome exhibited time-dependent killing profile. And from the results of the present study, it can be assumed that when %T > MIC reached 52.68%, cefquinome could be expected to be effective against a clinical E.coli strain for which the MIC value is below 0.128 µg/ml (3-log drop of bacteria count can be achieved after six successive administrations for 3 days).


Assuntos
Cefalosporinas/uso terapêutico , Infecções por Escherichia coli/tratamento farmacológico , Doenças dos Suínos/microbiologia , Animais , Antibacterianos/administração & dosagem , Antibacterianos/uso terapêutico , Cefalosporinas/administração & dosagem , Cultura em Câmaras de Difusão/veterinária , Relação Dose-Resposta a Droga , Masculino , Testes de Sensibilidade Microbiana , Distribuição Aleatória , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA