Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 443(Pt B): 130275, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36327852

RESUMO

Understanding bacteria inactivation mechanisms of nanomaterials on the surface molecular level is of prime importance for the development of antibacterial materials and their application in restraining the transmission of pathogenic microorganisms. This study prepared an oxygen vacancy-mediated bactericidal nanocatalyst α-MoO3 which exhibited excellent antibacterial activity against Escherichia coli and Staphylococcus aureus in the dark. By manipulating the surface structure of α-MoO3, the facile tuning of superoxide radical (•O2-) generation can be achieved, which was confirmed by electron paramagnetic resonance. •O2- disrupted bacterial membrane through attacking lipopolysaccharide (LPS) and phosphatidylethanolamine (PE). Intracellular reactive oxygen species (ROS) experiments confirm that oxidative stress induced by •O2- also played a vital role in bacterial inactivation, which might account for DNA damage verified by comet assays. The α-MoO3 with rich oxygen vacancies also exhibited good antibacterial efficiency (>99.00 %) toward airborne microbes under dark conditions, indicating its potential to impede the transmission of pathogenic microbes.


Assuntos
Oxigênio , Superóxidos , Antibacterianos/farmacologia , Antibacterianos/química , Staphylococcus aureus , Escherichia coli , Espécies Reativas de Oxigênio , Bactérias
2.
Environ Sci Pollut Res Int ; 29(14): 21184-21197, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34755294

RESUMO

The reclamation of mine waste deposits is often hindered by the scarcity of natural topsoil. Acid mine drainage sludge (AMDS), as a mass-produced waste in metalliferous mines, is a potential topsoil substitute but had not been validated. In this study, a pot experiment with three plant species was conducted to evaluate the capacity of AMDS to support plant growth, buffer acidification, and immobilize heavy metal(loid)s when reclaiming mine waste rocks. Chemical fertilizer and compost chicken manure were applied to AMDS at different rates to explore their effects on plant growth and the physicochemical properties of AMDS. Results showed that all the plants could survive in AMDS even without fertilization. The contents of heavy metal(loid)s in rhizosphere remained almost unchanged over the experimental period, indicating low leachability of revegetated AMDS. Fertilizers enhanced macronutrients and soil enzyme activities, leading to significant increases in plant biomass. However, owing to manure composting and low richness and diversity of the bacterial community in AMDS, the NH4+-N and bioavailable phosphorus contents were extremely low. Bermuda grass was a suitable pioneer species for reclamation for its better adaptability to nutrient deficiency and heavy metal(loid) stress. Overall, AMDS is a viable soil substitute for mine reclamation due to its capability to support plant growth and environmental safety.


Assuntos
Metais Pesados , Poluentes do Solo , Metais Pesados/análise , Esgotos , Solo/química , Poluentes do Solo/análise , Resíduos Sólidos
3.
J Colloid Interface Sci ; 603: 418-429, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34197990

RESUMO

Nowadays, numerous studies have focused on the newly developed technologies for the thorough removal of tetracyclines (TCs). The efficient removal of trace-amount pollutants requires the development of improved materials with higher adsorption capacity and increased adsorption selectivity. Zn(II)-mediated chitosan nonwoven fabric (Zn-CSNW) adsorbent with coordination capability was explored for the effective and selective removal of TC. The adsorption of TC to Zn-CSNW could reach equilibrium in about 30 min with a maximum adsorption capacity of 195.9 mg/g. It exhibited high anti-interference performance for TC adsorption at low concentrations, with good regeneration and effective reuse. Except for citrate, organic materials similar in structure to TC or common ions in aqueous solutions did not show obvious competition for the adsorption of low concentrations of TC. Additionally, the inherent fluorescence of chitosan and the fluorescence sensitization effect of Zn2+ for TC enabled function of Zn-CSNW as an indicator of the adsorption of TC by changes in fluorescence color and intensity under UV light (365 nm). It can indicate the saturation state of the Zn-CSNW, which will bring convenience to the use of the adsorbent. The Zn(II)-mediated coordination interaction plays a vital role in both the selective recognition of TC and the fluorescence sensing of adsorption amount, demonstrating an affordable and effective strategy for the treatment of water containing low amounts of antibiotics.


Assuntos
Quitosana , Poluentes Químicos da Água , Purificação da Água , Adsorção , Antibacterianos , Fluorescência , Concentração de Íons de Hidrogênio , Cinética , Tetraciclina , Tetraciclinas , Zinco
4.
Aquat Toxicol ; 93(2-3): 100-6, 2009 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-19428127

RESUMO

The toxicity of the chiral herbicides rac-metolachlor and S-metolachlor to Chlorella pyrenoidosa was determined and compared in this study, based on four different test endpoints: the growth inhibition rate, the chlorophyll a and chlorophyll b concentration, the catalase activity, and the ultrastructural morphology of cells. The 24, 48, 72, and 96h EC(50) values of rac-metolachlor were 0.196, 0.241, 0.177 and 0.152mgL(-1), respectively; these values were higher than those of S-metolachlor, which were 0.116, 0.106, 0.081 and 0.068mgL(-1), respectively. This indicates that S-metolachlor was more toxic to C. pyrenoidosa than rac-metolachlor. The Chla and Chlb concentration of C. pyrenoidosa treated by rac-metolachlor was higher than that treated by S-metolachlor. In general, the catalase activity of C. pyrenoidosa treated by S-metolachlor was higher than that exposed to rac-metolachlor, and catalase activity was inhibited at high concentrations of both herbicides. The ultrastructural morphology of cells grown in the two herbicides was observed by transmission electron microscopy. The cell wall separated from the cell membrane, accumulated starch granules were observed in the chloroplast, and some lipid droplets and unknown electron-opaque deposits were also observed in the cytoplasm. The mechanism of the toxicity of rac- and S-metolachlor toxicity to C. pyrenoidosa was explored, and the enantioselective toxicity of rac- and S-metolachlor to C. pyrenoidosa was determined. These results will help to develop an understanding of the biologically mediated environmental processes of rac- and S-metolachlor.


Assuntos
Acetamidas/toxicidade , Chlorella/efeitos dos fármacos , Herbicidas/toxicidade , Catalase/metabolismo , Processos de Crescimento Celular/efeitos dos fármacos , Chlorella/metabolismo , Chlorella/ultraestrutura , Clorofila/metabolismo , Clorofila A , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...