Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Medicine (Baltimore) ; 98(29): e16498, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31335716

RESUMO

RATIONALE: Relapse is the main cause of death after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Unfortunately, there are no efficient methods to prevent relapse after allo-HSCT. Chimeric antigen receptor T (CAR-T) cells have achieved favorable outcomes in the treatment of refractory/relapsed acute lymphoblastic leukemia (ALL) because of their strong anti-leukemia activity. However, it is unclear whether the CAR-T cells constructed using viral systems can be used as preventive infusions to prevent relapse after haploidentical HSCT. PATIENT CONCERNS: Two patients with ALL with high risk received haploidentical HSCT. DIAGNOSES: Two patients were diagnosed with ALL with high risk. INTERVENTIONS: Patients received preventive infusion of donor-derived CAR-T cells constructed using viral systems on day 60 after haploidentical HSCT. OUTCOMES: The CAR-T cells were continually detected, and no graft versus host disease developed. The two patients survived with disease-free for 1 year and 6 months, respectively. LESSONS: Preventive infusion of donor-derived CAR-T cells after haploidentical HSCT may be safe and that immunosuppressors may not affect the proliferation of CAR-T cells.


Assuntos
Doença Enxerto-Hospedeiro/prevenção & controle , Transplante de Células-Tronco Hematopoéticas/métodos , Imunoterapia Adotiva/métodos , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Receptores de Antígenos Quiméricos/uso terapêutico , Transplante Haploidêntico , Adulto , Pré-Escolar , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Imunossupressores/uso terapêutico , Masculino , Doadores de Tecidos
2.
Int J Cardiol ; 168(4): 3770-8, 2013 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-23830348

RESUMO

BACKGROUND: Myocardial fibrosis plays a pivotal role in the development of heart failure. Hydrogen sulfide (H2S) is an endogenous gasotransmitter with potent cardioprotective properties; however, whether H2S is involved in fibrotic process remains unknown. This study aimed to explore the role of H2S in the process of cardiac fibrosis and the underlying mechanisms. METHODS: Myocardial infarction (MI) was established in rats by ligation of coronary artery. Activation of rat neonatal cardiac fibroblasts was induced by angiotensin II (Ang II). Fibrotic responses in ischemic myocardium and in Ang II-stimulated cardiac fibroblasts were examined. The effects of sodium hydrosulfide (NaHS, an exogenous H2S donor) on NADPH oxidase 4 (Nox4), reactive oxygen species (ROS) production, extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation, heme oxygenase-1 (HO-1), and cystathionine γ-lyase (CSE) were tested to elucidate the protective mechanisms of H2S on fibrotic response. RESULTS: NaHS treatment inhibited Ang II-induced expression of α-smooth muscle actin, connective tissue growth factor (CTGF), and type I collagen and upregulated expression of HO-1 in cardiac fibroblasts. Ang II-induced Nox4 expression in cardiac fibroblasts was quenched by NaHS and this was associated with a decreased ROS production and reduced ERK1/2 phosphorylation and CTGF expression. In vivo studies using MI model indicated that NaHS administration attenuated Nox4 expression and fibrotic response. Moreover, NaHS therapy also prevented cardiac inflammatory response accompanied by increases in HO-1 and CSE expression. CONCLUSIONS: The beneficial effect of H2S, at least in part, was associated with a decrease of Nox4-ROS-ERK1/2 signaling axis and an increase in HO-1 expression.


Assuntos
Miócitos Cardíacos/enzimologia , NADPH Oxidases/antagonistas & inibidores , NADPH Oxidases/metabolismo , Transdução de Sinais/fisiologia , Sulfetos/farmacologia , Animais , Animais Recém-Nascidos , Células Cultivadas , Fibroblastos/efeitos dos fármacos , Fibroblastos/enzimologia , Fibroblastos/patologia , Fibrose/enzimologia , Fibrose/prevenção & controle , Masculino , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , NADPH Oxidase 4 , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
3.
Biochim Biophys Acta ; 1830(4): 2861-71, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23328493

RESUMO

BACKGROUND: Heme oxygenase-1 (HO-1) has potential anti-apoptotic properties. A novel compound [4-(2-acetoxy-3-((R)-3-(benzylthio)-1-methoxy-1-oxopropan-2- ylamino)-3-oxopropyl)-1,2-phenylene diacetate (DSC)] was synthesized by joining danshensu and cysteine through an appropriate linker. This study investigated if the cytoprotective properties of DSC involved the induction of HO-1. METHODS: We evaluated the cytoprotective effects of DSC on H2O2-induced cell damage, apoptosis, intracellular and mitochondrial reactive oxygen species (ROS) production, mitochondrial membrane potential (ΔΨm) loss, and apoptosis-related proteins expression and its underlying mechanisms. RESULTS: DSC concentration-dependently attenuated cell death, lactate dehydrogenase release, intracellular and mitochondrial ROS production, and ΔΨm collapse, modulated apoptosis-related proteins (Bcl-2, Bax, caspase-3, p53, and cleaved PARP) expression, and inhibited phosphorylation of extracellular signal-regulated kinase 1/2 in SH-SY5Y cells induced by H2O2. In addition, DSC concentration-dependently induced HO-1 expression associated with nuclear translocation of nuclear factor-erythroid 2 related factor 2 (Nrf-2), while the effect of DSC was inhibited by a phosphoinositide 3-kinase (PI3K) inhibitor LY294002. Furthermore, the protective effect of DSC on H2O2-induced cell death was abolished by HO-1 inhibitor ZnPP, but was mimicked by carbon monoxide-releasing moiety CORM-3 or HO-1 by-product bilirubin. Finally, DSC inhibited H2O2-induced changes of Bcl-2, Bax, and caspase-3 expression, and all of these effects were reversed by HO-1 silencing. CONCLUSIONS: Induction of HO-1 may be, at least in part, responsible for the anti-apoptotic property of DSC, an effect that involved the activation of PI3K/Akt/Nrf-2 axis. GENERAL SIGNIFICANCE: DSC might have the potential for beneficial therapeutic interventions for neurodegenerative diseases.


Assuntos
Apoptose/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Heme Oxigenase-1/biossíntese , Lactatos/farmacologia , Fenilacetatos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Peróxido de Hidrogênio/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Fosforilação , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima/efeitos dos fármacos
4.
Eur J Pharmacol ; 708(1-3): 8-13, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23353591

RESUMO

A novel compound [4-(2-acetoxy-3-((R)-3-(benzylthio)-1-methoxy-1-oxopropan-2-ylamino)-3-oxopropyl)-1,2-phenylene diacetate (DSC)], derived from Danshensu, exerted cytoprotective effects by anti-oxidative and anti-apoptotic activities in vitro. Herein, we reported the protective effects of DSC on lipopolysaccharide (LPS)-induced inflammatory responses in murine RAW264.7 macrophages and the underlying mechanisms. We showed that DSC concentration-dependently attenuated nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) expression with less cytotoxicity. Signal transduction studies indicated that DSC significantly inhibited LPS-induced phosphorylation of Akt, but not c-Jun N-terminal kinase 1/2, p38, or extracellular signal-regulated kinase 1/2. Meanwhile, LPS-induced nuclear translocation of nuclear factor-κB (NF-κB) p65 was decreased by DSC. Furthermore, a phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 significantly suppressed LPS-induced NF-κB p65 nuclear translocation, iNOS expression, and NO production, which was also mimicked by pretreatment with DSC. These results suggested that DSC attenuated LPS-induced inflammatory response in macrophages, at least in part, through suppression of PI3K/Akt signaling and NF-κB activation.


Assuntos
Anti-Inflamatórios/farmacologia , Macrófagos/efeitos dos fármacos , NF-kappa B/antagonistas & inibidores , Fenilacetatos/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Inflamação/induzido quimicamente , Inflamação/metabolismo , Lipopolissacarídeos , Macrófagos/metabolismo , Camundongos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Transdução de Sinais/efeitos dos fármacos
5.
Free Radic Biol Med ; 54: 93-104, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23127783

RESUMO

In our previous studies, we have reported that leonurine, a plant phenolic alkaloid in Herba leonuri, exerted cardioprotective properties in a number of preclinical experiments. Herein, we investigated the roles and the possible mechanisms of leonurine for reducing fibrotic responses in angiotensin II (Ang II)-stimulated primary neonatal rat cardiac fibroblasts and post-myocardial infarction (MI) rats. In in vitro experiments performed in neonatal rat cardiac fibroblasts, leonurine (10-20 µM) pretreatment attenuated Ang II-induced activation of extracellular signal-regulated kinase 1/2, production of intracellular reactive oxygen species (ROS), expression and activity of matrix metalloproteinase (MMP)-2/9, and expression of α-smooth muscle actin and types I and III collagen. A small interfering RNA-mediated knockdown strategy for NADPH oxidase 4 (Nox4) revealed that Nox4 was required for Ang II-induced activation of cardiac fibroblasts. In vivo studies using a post-MI model in rats indicated that administration of leonurine inhibited myocardial fibrosis while reducing cardiac Nox4 expression, ROS production, NF-κB activation, and plasma MMP-2 activity. In conclusion, our results provide the first evidence that leonurine could prevent cardiac fibrosis and the activation of cardiac fibroblasts partly through modulation of a Nox4-ROS pathway.


Assuntos
Ácido Gálico/análogos & derivados , Infarto do Miocárdio/enzimologia , Infarto do Miocárdio/patologia , Miocárdio/enzimologia , Miocárdio/patologia , NADPH Oxidases/antagonistas & inibidores , Angiotensina II/metabolismo , Animais , Células Cultivadas , Regulação para Baixo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose , Ácido Gálico/administração & dosagem , Ácido Gálico/efeitos adversos , Leonurus , Masculino , Metaloproteinase 2 da Matriz/metabolismo , NADPH Oxidase 4 , NADPH Oxidases/genética , NF-kappa B/metabolismo , RNA Interferente Pequeno/genética , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA