Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lett Appl Microbiol ; 76(3)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36849163

RESUMO

Biofilms are used widely to remove nitrogen from wastewater; however, most biofilm carriers (i.e. polyurethane foam, PUF) are hydrophobic organic materials with millimetre-scale apertures, ineffective attachment, and unstable colonization of microorganisms. To address these limitations, hydrophilic sodium alginate (SA) mixed with zeolite powder (Zeo) was cross-linked in PUF to form a micro-scale hydrogel (PAS) with a well-organized and reticular cellular structure. Scanning electron microscopy revealed that immobilized cells were entrapped in the interior of hydrogel filaments and rapidly formed a stable biofilm on the surface. The biofilm generated was 10.3-fold greater than the film developed on PUF. Kinetics and isotherm studies revealed that the as-developed carrier, because of the presence of Zeo, effectively improved the adsorption of NH4+-N by 53%. The PAS carrier achieved total nitrogen removal in excess of 86% for low carbon-to-nitrogen ratio wastewater treated for 30 d, indicating that this novel modification-encapsulation technology has potential for wastewater treatment.


Assuntos
Hidrogéis , Zeolitas , Desnitrificação , Águas Residuárias , Bactérias , Alginatos , Biofilmes , Nitrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...