Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(12)2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37376382

RESUMO

Cellulose, a kind of polymer containing abundant functional groups, has widespread use in the adsorptive removal of environmental pollutants. An efficient and environmental friendly polypyrrole (PPy) coating approach is employed to modify the agricultural by-product straw derived cellulose nanocrystal (CNC) into excellent property adsorbents for removing the heavy metal ion of Hg(II). The FT-IR and SEM-EDS results demonstrated that PPy is formed on the surface of CNC. Consequently, the adsorption measurements proved that the obtained PPy-modified CNC (CNC@PPy) possesses a remarkably enhanced Hg(II) adsorption capacity of 1095 mg g-1, owing to a plentiful functional group of doped Cl element on the surface of CNC@PPy by forming Hg2Cl2 precipitate. The results of the study suggest that the Freundlich model is more effective than the Langmuir model at describing the isotherms, while the pseudo-second order kinetic model is better suited to correlating with the experimental data compared to the pseudo-first order model. Further, the CNC@PPy exhibits an outstanding reusability, capable of maintaining 82.3% of its original Hg(II) adsorption capacity after five successive adsorption cycles. The findings of this work reveal a method to convert the agricultural by-product into high performance environmental remediation materials.

2.
Polymers (Basel) ; 15(8)2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37112065

RESUMO

Phosphorus is one of the important metabolic elements for living organisms, but excess phosphorus in water can lead to eutrophication. At present, the removal of phosphorus in water bodies mainly focuses on inorganic phosphorus, while there is still a lack of research on the removal of organic phosphorus (OP). Therefore, the degradation of OP and synchronous recovery of the produced inorganic phosphorus has important significance for the reuse of OP resources and the prevention of water eutrophication. Herein, a novel FeOOH-loaded aminated polyacrylonitrile fiber (PANAF-FeOOH) was constructed to enhance the removal of OP and phosphate. Taking phenylphosphonic acid (PPOA) as an example, the results indicated that modification of the aminated fiber was beneficial to FeOOH fixation, and the PANAF-FeOOH prepared with 0.3 mol L-1 Fe(OH)3 colloid had the best performance for OP degradation. The PANAF-FeOOH efficiently activated peroxydisulfate (PDS) for the degradation of PPOA with a removal efficiency of 99%. Moreover, the PANAF-FeOOH maintained high removal capacity for OP over five cycles as well as strong anti-interference in a coexisting ion system. In addition, the removal mechanism of PPOA by the PANAF-FeOOH was mainly attributed to the enrichment effect of PPOA adsorption on the fiber surface's special microenvironment, which was more conducive to contact with SO4•- and •OH generated by PDS activation. Furthermore, the PANAF-FeOOH prepared with 0.2 mol L-1 Fe(OH)3 colloid possessed excellent phosphate removal capacity with a maximal adsorption quantity of 9.92 mg P g-1. The adsorption kinetics and isotherms of the PANAF-FeOOH for phosphate were best depicted by pseudo-quadratic kinetics and a Langmuir isotherm model, showing a monolayer chemisorption procedure. Additionally, the phosphate removal mechanism was mainly due to the strong binding force of iron and the electrostatic force of protonated amine on the PANAF-FeOOH. In conclusion, this study provides evidence for PANAF-FeOOH as a potential material for the degradation of OP and simultaneous recovery of phosphate.

3.
Sci Rep ; 10(1): 17502, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33060730

RESUMO

This paper analyzed the compositional and structural changes of humic acid (HA) after combined with phosphate fertilizer (PHA), and investigated its effects on the growth of maize seedlings with four humic acid concentrations. The results showed that the atomic ratios of O/C and (O + N)/N of PHA were significantly lower than those of HA, which indicated that PHA had poor hydrophilicity compared with HA. The spectra of FTIR and NMR results suggested that the relative content of carboxyl group in PHA was higher than that in HA. X-ray photoelectron spectroscopy technology showed that the relative amount of C-C in PHA was lower than that in HA, while C-H was the opposite. The above changes were attributed to the crack of HA structure during the preparation of humic acid enhanced phosphate fertilizer, which was verified by the results from the determination of gel permeation chromatography that there were more low molecular weight components in PHA than that in HA. However, compared with HA, PHA showed a worse effect in promoting growth and the uptake of nitrogen, phosphorus and potassium by maize seedlings. This worse effect might be attributed to the poor hydrophilicity and unsuitable addition amount of PHA.


Assuntos
Fertilizantes/análise , Substâncias Húmicas/análise , Fosfatos/química , Plântula/crescimento & desenvolvimento , Zea mays/metabolismo , Carbono/química , Interações Hidrofóbicas e Hidrofílicas , Espectroscopia de Ressonância Magnética , Microscopia Eletrônica de Varredura , Peso Molecular , Nitrogênio/química , Fósforo/química , Potássio/química , Plântula/metabolismo , Solo , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Zea mays/crescimento & desenvolvimento
4.
Sci Rep ; 9(1): 3848, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30846813

RESUMO

Determination of the bioavailability of the hydrophobic organic contaminant benzo[a]pyrene (B[a]P) is extremely important for assessing its environmental risk. The effect of addition manner of B[a]P on the bioavailability and toxicity of B[a]P in soil remains unclear. In this study, soil samples, spiked with B[a]P by one-time or multiple-time additions, were tested to investigate the available fraction of B[a]P in soils, the uptake of B[a]P by red wiggler worms (Eisenia fetida), as well as superoxide dismutase (SOD) and peroxidase (POD) activities in earthworm coelomocytes at different periods. Results showed that the available fraction of B[a]P in soils and the amount of B[a]P assimilated by earthworms declined sharply from 1 d to 28 d during the incubation period and then decreased slowly from 28 to 56 d in both the one-time and the multiple-time addition tests. The available fraction of B[a]P in soils and its uptake by earthworms were significantly lower in multiple-time addition samples than those in one-time addition samples, a finding which was consistent with the SOD and POD activities in earthworms during the whole 56-d incubation period. These variations in the characteristics of the two addition treatments may be due to the differences in the way the B[a]P aged in the soil. These results indicated that the addition method was an important factor influencing the bioavailability of organic contaminants in soils.

5.
Sci Rep ; 9(1): 4767, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30886311

RESUMO

Tillage practice and residue management play important roles in N pool in soils. This study determined the impacts of tillage practice and residue management on crop yield. It also investigated the distribution, fractionation, and stratification of N at soil at depths ranging from 0 to 60 cm under wheat-maize cropping systems. Three treatments were established in 2009: no-tillage with straw removal for winter wheat and summer maize (NT), no-tillage with straw mulching for winter wheat and summer maize (NTS), no-tillage with straw mulching for summer maize and plow tillage with straw incorporation for winter wheat (NPTS). After 8 years, soil total nitrogen (TN) content in NTS was greater than in NT, but only in 0-10 cm layer. NPTS treatment increased TN content over NT and NTS in 10-20 cm layer by 18.0% and 13.9%, and by 16.8% and 18.1% in 20-30 cm layer, respectively. Particulate organic N, microbial biomass N and water-extractable organic N levels were the greatest in 0-10 cm layer under NTS treatment; and in 10-30 cm layer, the corresponding values were the highest under NPTS treatment. NPTS treatment could immobilize the mineral N in 10-30 cm layer, and reduced leaching losses into deeper soil layers (40-60 cm). Furthermore, total yield increased by 14.7% and 8.5% in NPTS treatment compared to NT and NTS treatments, respectively. These results indicate that NPTS is an effective and sustainable management practice, which will improve soil fertility, sustainable crop production, and environmental quality in low-productivity soils in central China.


Assuntos
Agricultura/métodos , Produção Agrícola/métodos , Solo/química , Triticum/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimento , China , Clima , Nitrogênio/análise , Estações do Ano
6.
RSC Adv ; 9(64): 37630-37641, 2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-35542276

RESUMO

Wastewater purification using fibrous adsorbents has received much attention due to their high efficiency, low cost, and recyclability. In this work, phosphate modified polyacrylonitrile fiber (B-PANEAPF) was prepared and used to remove cationic dyes. The B-PANEAPF showed the best adsorption capacity for crystal violet (CV) when compared with rhodamine B, methyl green, Victoria blue B, methylene blue, and neutral red. The adsorption tests revealed that the fiber possessed high adsorption efficiency and achieved semi-saturated adsorption within 15 min. The maximum adsorption capacity of 354.46 mg g-1 as calculated by the Langmuir adsorption model was higher than many other adsorbents. Furthermore, the B-PANEAPF was used to remove 210 mL of CV in a continuous-flow process with a high removal efficiency over 90%. Besides, the phosphate functionalized fiber could easily decrease the concentration of CV to below 0.5 mg L-1 which is below the maximum effluent discharge standard of 15 mg L-1 prescribed in China. It could also be fully recovered and easily separated from the solution to achieve re-use 10 cycles. Moreover, the adsorption mechanism indicated that the adsorption process of the fiber for CV was mainly attributed to electrostatic interaction and hydrogen bonding. In conclusion, the results suggested that the B-PANEAPF characterized by its simplicity, efficiency, eco-friendliness, and reusability, could be a promising candidate for CV removal.

7.
Ecotoxicol Environ Saf ; 170: 210-217, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30529915

RESUMO

The soil cadmium (Cd) availability and uptake by Tagetes patula grown in two soil types contaminated with Cd and amended with N fertilizer and wheat straw were studied in a pot-culture experiment. The results indicated that N fertilizer treatment (N) and N fertilizer plus straw treatment (NS) promoted T. patula growth, while straw treatment (S) decreased T. patula biomass relative to the control. NS and S treatments increased Cd mobility in the soil and facilitated its uptake by T. patula in Acidic Ferralsols (AF) and Calcaric Cambisols (CC), but the promotion effect was much greater in CC than in AF. The Cd concentrations in the Tagetes shoots in the S and NS treatments were 40% and 27% greater, respectively, than those in the control treatment for AF, and 111% and 80% greater, respectively, for CC. Decreases in soil pH and increases in dissoluble organic carbon concentration after adding N fertilizer and straw were associated with an increase in soil Cd availability and in Cd uptake by T. patula. The results indicate that the NS treatment can alter the soil microenvironment, increasing Cd bioavailability and thus facilitating Cd uptake by T. patula. This work highlights that the combined application of N fertilizer with straw may be a useful way to increase the phytoextraction efficiency of Cd-contaminated soil by the Cd-hyperaccumulator T. patula.


Assuntos
Cádmio/isolamento & purificação , Fertilizantes/análise , Nitrogênio/análise , Tagetes/metabolismo , Triticum , Concentração de Íons de Hidrogênio , Raízes de Plantas/metabolismo , Caules de Planta , Solo/química , Poluentes do Solo/isolamento & purificação
8.
Adv Mater ; : e1801450, 2018 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-29808597

RESUMO

The layer-structured MoS2 is a typical hydrogen evolution reaction (HER) electrocatalyst but it possesses poor activity for the oxygen evolution reaction (OER). In this work, a cobalt covalent doping approach capable of inducing HER and OER bifunctionality into MoS2 for efficient overall water splitting is reported. The results demonstrate that covalently doping cobalt into MoS2 can lead to dramatically enhanced HER activity while simultaneously inducing remarkable OER activity. The catalyst with optimal cobalt doping density can readily achieve HER and OER onset potentials of -0.02 and 1.45 V (vs reversible hydrogen electrode (RHE)) in 1.0 m KOH. Importantly, it can deliver high current densities of 10, 100, and 200 mA cm-2 at low HER and OER overpotentials of 48, 132, 165 mV and 260, 350, 390 mV, respectively. The reported catalyst activation approach can be adapted for bifunctionalization of other transition metal dichalcogenides.

9.
Chem Commun (Camb) ; 54(31): 3859-3862, 2018 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-29594298

RESUMO

Cobalt-doped MoS2 nanosheets were prepared via a facile hydrothermal method, exhibiting bifunctional activities of hydrogen and oxygen evolution reactions in both acidic and alkaline media. Cobalt doping not only improves the conductivity, decreasing the hydrogen adsorption free energy of MoS2 for HER, but also contributes catalytic active sites for OER.

10.
ACS Appl Mater Interfaces ; 9(45): 39618-39625, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29058868

RESUMO

Dithiocarbamate (DTC) pesticides are widely used for fruits, vegetables, and mature crops to control fungal diseases. Their residues in food could pose a threat to human health. Therefore, a surface-enhanced Raman scattering-based (SERS-based) sensor is developed to detect DTC pesticides because SERS can provide the characteristic spectrum of pesticides and avoid the use of a molecular recognition probe in the sensor. For the acquisition of high sensitivity, good anti-interference ability, and robustness of the SERS sensor, a silver nanocube-reduced graphene oxide (AgNC-rGO) sponge is devised. In the AgNC-rGO sponge, the rGO sheets form a porous scaffold that physically holds the AgNCs, which create narrow gaps between the neighboring AgNCs, leading to the formation of "hot spots" for SERS-signal amplification. When DTC pesticides coexist with aromatic pesticides in a sample matrix, the AgNC-rGO sponge can selectively detect DTC pesticides because of the preferential adsorption of DTC pesticides on the Ag surface and aromatic pesticides on the rGO surface, which can effectively eliminate the interference of the SERS signals of aromatic pesticides, and facilitate the qualitative and quantitative analysis of DTC pesticides. The AgNC-rGO sponge shows great potential as a SERS substrate for selective detection of DTC pesticides.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...