Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 261: 121998, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38996735

RESUMO

The presence of active pharmaceutical ingredients (APIs) in wastewater effluents and natural aquatic systems threatens ecological and human health. While activated carbon-based adsorbents, such as GAC and PAC, are widely used for API removal, they exhibit certain deficiencies, including reduced performance due to the presence of natural organic macromolecules (NOMs) and high regeneration costs. There is growing demand for a robust, stable, and self-regenerative adsorbent designed for API removal in various environments. In this study, we synthesized a self-generating metal oxide nano-composite (S-MGC) containing titanium dioxide (TiO2) and silicon dioxide (SiO2) combined with 3D graphene oxide (GO) to adsorb APIs and undergo regeneration via light illumination. We determined optimal TiO2:SiO2:GO compositions for the S-MGCs through experiments using a model contaminant, methylene blue. The physical and chemical properties of S-MGCs were characterized, and their adsorption and photodegradation capabilities were studied using five model APIs, including sulfamethoxazole, carbamazepine, ketoprofen, valsartan, and diclofenac, both in single-component and multi-component mixtures. In the absence of TiO2/SiO2, 3D graphene oxide (CGB) displayed better adsorption performance compared to GAC, and S-MGCs further improve CGB's adsorption capacity. This performance remained consistent in two complex water environments: aqueous solutions at varying NOM levels and artificial urine. TiO2 supported on the GO surface exhibits similar photocatalytic activity to suspended TiO2. In a continuous fixed-bed column test, S-MGCs demonstrated robust API adsorption performance that is maintained in the presence of NOM or urine, and can be regenerated through multiple cycles of adsorption and light illumination.


Assuntos
Grafite , Poluentes Químicos da Água , Grafite/química , Adsorção , Poluentes Químicos da Água/química , Purificação da Água/métodos , Preparações Farmacêuticas/química , Dióxido de Silício/química , Titânio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...