Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
EMBO J ; 42(15): e113410, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37366237

RESUMO

Mutations in LRRK2 are the most common genetic causes of Parkinson's disease (PD). While the enzymatic activity of LRRK2 has been linked to PD, previous work has also provided support for an important role of elevated LRRK2 protein levels, independent of enzymatic activity, in PD pathogenesis. However, the mechanisms underlying the regulation of LRRK2 protein levels remain unclear. Here, we identify a role for the purine biosynthesis pathway enzyme ATIC in the regulation of LRRK2 levels and toxicity. AICAr, the precursor of ATIC substrate, regulates LRRK2 levels in a cell-type-specific manner in vitro and in mouse tissue. AICAr regulates LRRK2 levels through AUF1-mediated mRNA decay. Upon AICAr treatment, the RNA binding protein AUF1 is recruited to the AU-rich elements (ARE) of LRRK2 mRNA leading to the recruitment of the decapping enzyme complex DCP1/2 and decay of LRRK2 mRNA. AICAr suppresses LRRK2 expression and rescues LRRK2-induced dopaminergic neurodegeneration and neuroinflammation in PD Drosophila and mouse models. Together, this study provides insight into a novel regulatory mechanism of LRRK2 protein levels and function via LRRK2 mRNA decay that is distinct from LRRK2 enzymatic functions.


Assuntos
Doença de Parkinson , Animais , Camundongos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Estabilidade de RNA , RNA Mensageiro/genética , Mutação
2.
EMBO Rep ; 23(12): e55851, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36285521

RESUMO

The Hippo pathway is an evolutionarily conserved developmental pathway that controls organ size by integrating diverse regulatory inputs, including actomyosin-mediated cytoskeletal tension. Despite established connections between the actomyosin cytoskeleton and the Hippo pathway, the upstream regulation of actomyosin in the Hippo pathway is less defined. Here, we identify the phosphoinositide-3-phosphatase Myotubularin (Mtm) as a novel upstream regulator of actomyosin that functions synergistically with the Hippo pathway during growth control. Mechanistically, Mtm regulates membrane phospholipid PI(3)P dynamics, which, in turn, modulates actomyosin activity through Rab11-mediated vesicular trafficking. We reveal PI(3)P dynamics as a novel mode of upstream regulation of actomyosin and establish Rab11-mediated vesicular trafficking as a functional link between membrane lipid dynamics and actomyosin activation in the context of growth control. Our study also shows that MTMR2, the human counterpart of Drosophila Mtm, has conserved functions in regulating actomyosin activity and tissue growth, providing new insights into the molecular basis of MTMR2-related peripheral nerve myelination and human disorders.


Assuntos
Actomiosina , Via de Sinalização Hippo , Humanos
3.
eNeuro ; 8(6)2021.
Artigo em Inglês | MEDLINE | ID: mdl-34759048

RESUMO

The G2019S mutation in leucine-rich repeat kinase 2 (LRRK2) causes familial Parkinson's disease (PD) and is also found in a subset of idiopathic cases. Prior studies in Drosophila and human induced pluripotent stem cell (iPSC)-derived dopamine neurons uncovered a pronounced effect of G2019S LRRK2 on mRNA translation. It was previously reported that G2019S LRRK2 promotes translation of mRNAs with complex 5' untranslated region (UTR) secondary structure, resulting in increased expression of calcium channels and dysregulated calcium homeostasis in human dopamine neurons. Here, we show that dysregulated translation occurs in the brains of mammalian LRRK2 models in vivo Through ribosome profiling studies of global translation, we observe that mRNAs with complex 5'UTR structure are also preferentially translated in the G2019S LRRK2-expressing mouse brain. Reporter assays suggest that this 5'UTR preference is independent of translation initiation factors. Conversely, translation of mRNAs with complex 5'UTR secondary structure is downregulated in LRRK2 knock-out (KO) mouse brain, indicating a robust link between LRRK2 kinase activity and translation of mRNA with complex 5'UTR structure. Further, substantia nigra pars compacta (SNpc) dopamine neurons in the G2019S LRRK2-expressing brain exhibit increased calcium influx, which is consistent with the previous report from human dopamine neurons. These results collectively suggest that LRRK2 plays a mechanistic role in translational regulation, and the G2019S mutation in LRRK2 causes translational defects leading to calcium dysregulation in the mammalian brain.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doença de Parkinson , Animais , Encéfalo/metabolismo , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Doença de Parkinson/genética , Biossíntese de Proteínas
4.
Sci Signal ; 14(693)2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34315807

RESUMO

Mutations in the kinase LRRK2 and impaired endocytic trafficking are both implicated in the pathogenesis of Parkinson's disease (PD). Expression of the PD-associated LRRK2 mutant in mouse dopaminergic neurons was shown to disrupt clathrin-mediated endocytic trafficking. Here, we explored the molecular mechanism linking LRRK2 to endocytosis and found that LRRK2 bound to and phosphorylated the µ2 subunit of the adaptor protein AP2 (AP2M1), a core component of the clathrin-mediated endocytic machinery. Analysis of human SH-SY5Y cells and mouse neurons and tissues revealed that loss of LRRK2 abundance or kinase function resulted in decreased phosphorylation of AP2M1, which is required for the initial formation of clathrin-coated vesicles (CCVs). In contrast, overexpression of LRRK2 or expression of a Parkinson's disease-associated gain-of-function mutant LRRK2 (G2019S) inhibited the uncoating of AP2M1 from CCVs at later stages and prevented new cycles of CCV formation. Thus, the abundance and activity of LRRK2 must be calibrated to ensure proper endocytosis. Dysregulated phosphorylation of AP2M1 from the brain but not thyroid tissues of LRRK2 knockout and G2019S-knockin mice suggests a tissue-specific regulatory mechanism of endocytosis. Furthermore, we found that LRRK2-dependent phosphorylation of AP2M1 mediated dopaminergic neurodegeneration in a Drosophila model of PD. Together, our findings provide a mechanistic link between LRRK2, AP2, and endocytosis in the pathogenesis of PD.


Assuntos
Dopamina , Neurônios Dopaminérgicos , Animais , Neurônios Dopaminérgicos/metabolismo , Endocitose , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Camundongos , Mutação , Fosforilação
5.
J Proteome Res ; 20(7): 3428-3443, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34061533

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disorder that results in motor dysfunction and, eventually, cognitive impairment. α-Synuclein protein is known as a central protein to the pathophysiology of PD, but the underlying pathological mechanism still remains to be elucidated. In an effort to understand how α-synuclein underlies the pathology of PD, various PD mouse models with α-synuclein overexpression have been developed. However, systemic analysis of the brain proteome of those mouse models is lacking. In this study, we established two mouse models of PD by injecting α-synuclein preformed fibrils (PFF) or by inducing overexpression of human A53T α-synuclein to investigate common pathways in the two different types of the PD mouse models. For more accurate quantification of mouse brain proteome, the proteins were quantified using the method of stable isotope labeling with amino acids in mammals . We identified a total of 8355 proteins from the two mouse models; ∼6800 and ∼7200 proteins from α-synuclein PFF-injected mice and human A53T α-synuclein transgenic mice, respectively. Through pathway analysis of the differentially expressed proteins common to both PD mouse models, it was discovered that the complement and coagulation cascade pathways were enriched in the PD mice compared to control animals. Notably, a validation study demonstrated that complement component 3 (C3)-positive astrocytes were increased in the ventral midbrain of the intrastriatal α-synuclein PFF-injected mice and C3 secreted from astrocytes could induce the degeneration of dopaminergic neurons. This is the first study that highlights the significance of the complement and coagulation pathways in the pathogenesis of PD through proteome analyses with two sophisticated mouse models of PD.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Animais , Modelos Animais de Doenças , Dopamina , Humanos , Camundongos , Camundongos Transgênicos , Doença de Parkinson/genética , alfa-Sinucleína/genética
6.
Cells ; 10(2)2021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-33498474

RESUMO

Mutations in LRRK2 play a critical role in both familial and sporadic Parkinson's disease (PD). Up to date, the role of LRRK2 in PD onset and progression remains largely unknown. However, experimental evidence highlights a critical role of LRRK2 in the control of vesicle trafficking, likely by Rab phosphorylation, that in turn may regulate different aspects of neuronal physiology. Here we show that LRRK2 interacts with Sec8, one of eight subunits of the exocyst complex. The exocyst complex is an evolutionarily conserved multisubunit protein complex mainly involved in tethering secretory vesicles to the plasma membrane and implicated in the regulation of multiple biological processes modulated by vesicle trafficking. Interestingly, Rabs and exocyst complex belong to the same protein network. Our experimental evidence indicates that LRRK2 kinase activity or the presence of the LRRK2 kinase domain regulate the assembly of exocyst subunits and that the over-expression of Sec8 significantly rescues the LRRK2 G2019S mutant pathological effect. Our findings strongly suggest an interesting molecular mechanism by which LRRK2 could modulate vesicle trafficking and may have important implications to decode the complex role that LRRK2 plays in neuronal physiology.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Proteínas de Membrana/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Linhagem Celular Tumoral , Células HEK293 , Humanos , Camundongos Knockout , Células PC12 , Ligação Proteica , Ratos
7.
Mol Neurodegener ; 15(1): 17, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32138754

RESUMO

BACKGROUND: Mutations in PINK1 and parkin cause autosomal recessive Parkinson's disease (PD). Evidence placing PINK1 and parkin in common pathways regulating multiple aspects of mitochondrial quality control is burgeoning. However, compelling evidence to causatively link specific PINK1/parkin dependent mitochondrial pathways to dopamine neuron degeneration in PD is lacking. Although PINK1 and parkin are known to regulate mitophagy, emerging data suggest that defects in mitophagy are unlikely to be of pathological relevance. Mitochondrial functions of PINK1 and parkin are also tied to their proteasomal regulation of specific substrates. In this study, we examined how PINK1/parkin mediated regulation of the pathogenic substrate PARIS impacts dopaminergic mitochondrial network homeostasis and neuronal survival in Drosophila. METHODS: The UAS-Gal4 system was employed for cell-type specific expression of the various transgenes. Effects on dopamine neuronal survival and function were assessed by anti-TH immunostaining and negative geotaxis assays. Mitochondrial effects were probed by quantitative analysis of mito-GFP labeled dopaminergic mitochondria, assessment of mitochondrial abundance in dopamine neurons isolated by Fluorescence Activated Cell Sorting (FACS) and qRT-PCR analysis of dopaminergic factors that promote mitochondrial biogenesis. Statistical analyses employed two-tailed Student's T-test, one-way or two-way ANOVA as required and data considered significant when P < 0.05. RESULTS: We show that defects in mitochondrial biogenesis drive adult onset progressive loss of dopamine neurons and motor deficits in Drosophila models of PINK1 or parkin insufficiency. Such defects result from PARIS dependent repression of dopaminergic PGC-1α and its downstream transcription factors NRF1 and TFAM that cooperatively promote mitochondrial biogenesis. Dopaminergic accumulation of human or Drosophila PARIS recapitulates these neurodegenerative phenotypes that are effectively reversed by PINK1, parkin or PGC-1α overexpression in vivo. To our knowledge, PARIS is the only co-substrate of PINK1 and parkin to specifically accumulate in the DA neurons and cause neurodegeneration and locomotor defects stemming from disrupted dopamine signaling. CONCLUSIONS: Our findings identify a highly conserved role for PINK1 and parkin in regulating mitochondrial biogenesis and promoting mitochondrial health via the PARIS/ PGC-1α axis. The Drosophila models described here effectively recapitulate the cardinal PD phenotypes and thus will facilitate identification of novel regulators of mitochondrial biogenesis for physiologically relevant therapeutic interventions.


Assuntos
Neurônios Dopaminérgicos/patologia , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Degeneração Neural/patologia , Proteínas Repressoras/metabolismo , Animais , Animais Geneticamente Modificados , Neurônios Dopaminérgicos/metabolismo , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/genética , Drosophila melanogaster , Humanos , Degeneração Neural/metabolismo , Biogênese de Organelas , Doença de Parkinson , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/genética , Ubiquitina-Proteína Ligases/deficiência , Ubiquitina-Proteína Ligases/genética
8.
Chem Sci ; 10(35): 8094-8099, 2019 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-31857877

RESUMO

N-Terminal methyltransferase 1 (NTMT1) catalyzes the N-terminal methylation of proteins with a specific N-terminal motif after methionine removal. Aberrant N-terminal methylation has been implicated in several cancers and developmental diseases. Together with motif sequence and signal peptide analyses, activity-based substrate profiling of NTMT1 utilizing (E)-hex-2-en-5-ynyl-S-adenosyl-l-methionine (Hey-SAM) revealed 72 potential targets, which include several previously confirmed ones and many unknowns. Target validation using normal and NTMT1 knock-out (KO) HEK293FT cells generated by CRISPR-Cas9 demonstrated that Obg-like ATPase 1 (OLA1), a protein involved in many critical cellular functions, is methylated in vivo by NTMT1. Additionally, Hey-SAM synthesis achieved ≥98% yield for SAH conversion.

9.
Cell Rep ; 26(3): 733-747.e3, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30650363

RESUMO

Nutrient restriction (NR) decreases the incidence and growth of many types of tumors, yet the underlying mechanisms are not fully understood. In this study, we identified Headcase (Hdc) and Unkempt (Unk) as two NR-specific tumor suppressor proteins that form a complex to restrict cell cycle progression and tissue growth in response to NR in Drosophila. Loss of Hdc or Unk does not confer apparent growth advantage under normal nutrient conditions but leads to accelerated cell cycle progression and tissue overgrowth under NR. Hdc and Unk bind to the TORC1 component Raptor and preferentially regulate S6 phosphorylation in a TORC1-dependent manner. We further show that HECA and UNK, the human counterparts of Drosophila Hdc and Unk, respectively, have a conserved function in regulating S6 phosphorylation and tissue growth. The identification of Hdc and Unk as two NR-specific tumor suppressors provides insight into molecular mechanisms underlying the anti-tumorigenic effects of NR.


Assuntos
Ciclo Celular/genética , Nutrientes/metabolismo , Animais , Progressão da Doença , Drosophila , Transdução de Sinais
10.
Front Neurol ; 9: 228, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29686647

RESUMO

Parkinson's disease (PD) is recognized as the second most common neurodegenerative disorder after Alzheimer's disease. Unfortunately, there is no cure or proven disease modifying therapy for PD. The recent discovery of a number of genes involved in both sporadic and familial forms of PD has enabled disease modeling in easily manipulable model systems. Various model systems have been developed to study the pathobiology of PD and provided tremendous insights into the molecular mechanisms underlying dopaminergic neurodegeneration. Among all the model systems, the power of Drosophila has revealed many genetic factors involved in the various pathways, and provided potential therapeutic targets. This review focuses on Drosophila models of PD, with emphasis on how Drosophila models have provided new insights into the mutations of dominant genes causing PD and what are the convergent mechanisms.

11.
Proc Natl Acad Sci U S A ; 115(7): 1635-1640, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29386392

RESUMO

Mutations in LRRK2 are known to be the most common genetic cause of sporadic and familial Parkinson's disease (PD). Multiple lines of LRRK2 transgenic or knockin mice have been developed, yet none exhibit substantial dopamine (DA)-neuron degeneration. Here we develop human tyrosine hydroxylase (TH) promoter-controlled tetracycline-sensitive LRRK2 G2019S (GS) and LRRK2 G2019S kinase-dead (GS/DA) transgenic mice and show that LRRK2 GS expression leads to an age- and kinase-dependent cell-autonomous neurodegeneration of DA and norepinephrine (NE) neurons. Accompanying the loss of DA neurons are DA-dependent behavioral deficits and α-synuclein pathology that are also LRRK2 GS kinase-dependent. Transmission EM reveals that that there is an LRRK2 GS kinase-dependent significant reduction in synaptic vesicle number and a greater abundance of clathrin-coated vesicles in DA neurons. These transgenic mice indicate that LRRK2-induced DA and NE neurodegeneration is kinase-dependent and can occur in a cell-autonomous manner. Moreover, these mice provide a substantial advance in animal model development for LRRK2-associated PD and an important platform to investigate molecular mechanisms for how DA neurons degenerate as a result of expression of mutant LRRK2.


Assuntos
Modelos Animais de Doenças , Dopamina/metabolismo , Neurônios Dopaminérgicos/patologia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/fisiologia , Doenças Neurodegenerativas/patologia , Norepinefrina/metabolismo , Fatores Etários , Animais , Comportamento Animal , Neurônios Dopaminérgicos/metabolismo , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Atividade Motora , Mutação , Doenças Neurodegenerativas/metabolismo , alfa-Sinucleína/metabolismo
12.
Adv Neurobiol ; 14: 163-191, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28353284

RESUMO

Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most common genetic causes of Parkinson's disease (PD) and also one of the strongest genetic risk factors in sporadic PD. The LRRK2 protein contains a GTPase and a kinase domain and several protein-protein interaction domains. Both in vitro and in vivo assays in different model systems have provided tremendous insights into the molecular mechanisms underlying LRRK2-induced dopaminergic neurodegeneration. Among all the model systems, animal models are crucial tools to study the pathogenesis of human disease. How do the animal models recapitulate LRRK2-induced dopaminergic neuronal loss in human PD? To answer this question, this review focuses on the discussion of the animal models of LRRK2-associated PD including genetic- and viral-based models.


Assuntos
Modelos Animais de Doenças , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Doença de Parkinson/genética , Animais , Humanos , Mutação
13.
eNeuro ; 4(2)2017.
Artigo em Inglês | MEDLINE | ID: mdl-28321439

RESUMO

Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene have been identified as an unambiguous cause of late-onset, autosomal-dominant familial Parkinson's disease (PD) and LRRK2 mutations are the strongest genetic risk factor for sporadic PD known to date. A number of transgenic mice expressing wild-type or mutant LRRK2 have been described with varying degrees of LRRK2-related abnormalities and modest pathologies. None of these studies directly addressed the role of the kinase domain in the changes observed and none of the mice present with robust features of the human disease. In an attempt to address these issues, we created a conditional LRRK2 G2019S (LRRK2 GS) mutant and a functionally negative control, LRRK2 G2019S/D1994A (LRRK2 GS/DA). Expression of LRRK2 GS or LRRK2 GS/DA was conditionally controlled using the tet-off system in which the presence of tetracycline-transactivator protein (tTA) with a CAMKIIα promoter (CAMKIIα-tTA) induced expression of TetP-LRRK2 GS or TetP-LRRK2 GS/DA in the mouse forebrain. Overexpression of LRRK2 GS in mouse forebrain induced behavioral deficits and α-synuclein pathology in a kinase-dependent manner. Similar to other genetically engineered LRRK2 GS mice, there was no significant loss of dopaminergic neurons. These mice provide an important new tool to study neurobiological changes associated with the increased kinase activity from the LRRK2 G2019S mutation, which may ultimately lead to a better understanding of not only the physiologic actions of LRRK2, but also potential pathologic actions that underlie LRRK2 GS-associated PD.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/patologia , Prosencéfalo/metabolismo , Prosencéfalo/patologia , alfa-Sinucleína/metabolismo , Anfetamina/farmacologia , Animais , Estimulantes do Sistema Nervoso Central/farmacologia , Comportamento Exploratório/efeitos dos fármacos , Feminino , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Masculino , Camundongos Transgênicos , Atividade Motora/efeitos dos fármacos , Mutação , Transtornos Parkinsonianos/psicologia , Prosencéfalo/efeitos dos fármacos , Agregação Patológica de Proteínas/metabolismo , Agregação Patológica de Proteínas/patologia , Distribuição Aleatória , Tirosina 3-Mono-Oxigenase/metabolismo
14.
Science ; 353(6307)2016 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-27708076

RESUMO

Emerging evidence indicates that the pathogenesis of Parkinson's disease (PD) may be due to cell-to-cell transmission of misfolded preformed fibrils (PFF) of α-synuclein (α-syn). The mechanism by which α-syn PFF spreads from neuron to neuron is not known. Here, we show that LAG3 (lymphocyte-activation gene 3) binds α-syn PFF with high affinity (dissociation constant = 77 nanomolar), whereas the α-syn monomer exhibited minimal binding. α-Syn-biotin PFF binding to LAG3 initiated α-syn PFF endocytosis, transmission, and toxicity. Lack of LAG3 substantially delayed α-syn PFF-induced loss of dopamine neurons, as well as biochemical and behavioral deficits in vivo. The identification of LAG3 as a receptor that binds α-syn PFF provides a target for developing therapeutics designed to slow the progression of PD and related α-synucleinopathies.


Assuntos
Antígenos CD/metabolismo , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Animais , Neurônios Dopaminérgicos/metabolismo , Endocitose , Humanos , Camundongos , Camundongos Transgênicos , Ligação Proteica , Transporte Proteico , alfa-Sinucleína/genética , Proteína do Gene 3 de Ativação de Linfócitos
15.
J Chem Neuroanat ; 76(Pt B): 90-97, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26808467

RESUMO

Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common causes of late onset autosomal dominant form of Parkinson disease (PD). Gain of kinase activity due to the substitution of Gly 2019 to Ser (G2019S) is the most common mutation in the kinase domain of LRRK2. Genetic predisposition and environmental toxins contribute to the susceptibility of neurodegeneration in PD. To identify whether the genetic mutations in LRRK2 increase the susceptibility to environmental toxins in PD models, we exposed transgenic mice expressing human G2019S mutant or wild type (WT) LRRK2 to the environmental toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). MPTP treatment resulted in a greater loss of tyrosine hydroxylase-positive neurons in the substantia nigra pars compacta (SNpc) in LRRK2 G2019S transgenic mice compared to the LRRK2 WT overexpressing mice. Similarly loss of dopamine levels were greater in the striatum of LRRK2 G2019S mice when compared to the LRRK2 WT mice when both were treated with MPTP. This study suggests a likely interaction between genetic and environmental risk factors in the PD pathogenesis and that the G2019S mutation in LRRK2 increases the susceptibility of dopamine neurons to PD-causing toxins.

16.
Int Immunopharmacol ; 23(2): 688-95, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25445961

RESUMO

This study aimed to investigate the effect of the iminosugar derivative WGN-26 on suppressing acute allograft rejection and to explore the underlying mechanisms. The results demonstrated that WGN-26 (12, 6 and 3mg/kg) significantly prolonged the skin allograft survival time in a dose-dependent manner and minimized the pathological changes. The minimum lethal dose was 320 mg/kg. By exploring the potential cellular and molecular mechanisms, we found that WGN-26 dose-dependently inhibited T lymphocyte proliferation, as determined through the single mixed lymphocyte reaction (sMLR) or the ConA-induced T cell proliferation assay in allograft recipients. The FCM results indicated that WGN-26 particularly reduced the percentage of CD3(+)CD4(+) T cells in allograft recipients. After treatment with WGN-26, the secretion of IFN-γ in allograft recipients was lowered, whereas the IL-4 and IL-17 levels remained stable. Furthermore, we found that WGN-26 inhibited the phosphorylation of STAT1 and accelerated the degradation of T-bet protein in allograft recipients. This study provides the first report that the iminosugar derivative WGN-26 dose-dependently prolongs skin allograft survival and that the possible mechanism is mediated by inhibiting CD4(+) T cell proliferation and suppressing the IFN-γ/p-STAT1/T-bet signaling pathway.


Assuntos
Rejeição de Enxerto/prevenção & controle , Imino Açúcares/química , Interferon gama/metabolismo , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transplante de Pele , Proteínas com Domínio T/metabolismo , Doença Aguda , Animais , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Proliferação de Células/efeitos dos fármacos , Citometria de Fluxo , Rejeição de Enxerto/imunologia , Imino Açúcares/administração & dosagem , Imino Açúcares/uso terapêutico , Teste de Cultura Mista de Linfócitos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Baço/citologia , Baço/efeitos dos fármacos , Baço/imunologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia
17.
Cell ; 157(2): 472-485, 2014 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-24725412

RESUMO

Mutations in leucine-rich repeat kinase 2 (LRRK2) are a common cause of familial and sporadic Parkinson's disease (PD). Elevated LRRK2 kinase activity and neurodegeneration are linked, but the phosphosubstrate that connects LRRK2 kinase activity to neurodegeneration is not known. Here, we show that ribosomal protein s15 is a key pathogenic LRRK2 substrate in Drosophila and human neuron PD models. Phosphodeficient s15 carrying a threonine 136 to alanine substitution rescues dopamine neuron degeneration and age-related locomotor deficits in G2019S LRRK2 transgenic Drosophila and substantially reduces G2019S LRRK2-mediated neurite loss and cell death in human dopamine and cortical neurons. Remarkably, pathogenic LRRK2 stimulates both cap-dependent and cap-independent mRNA translation and induces a bulk increase in protein synthesis in Drosophila, which can be prevented by phosphodeficient T136A s15. These results reveal a novel mechanism of PD pathogenesis linked to elevated LRRK2 kinase activity and aberrant protein synthesis in vivo.


Assuntos
Neurônios/metabolismo , Doença de Parkinson/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Ribossômicas/metabolismo , Sequência de Aminoácidos , Animais , Drosophila melanogaster , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Dados de Sequência Molecular , Neurônios/patologia , Doença de Parkinson/patologia , Proteínas Ribossômicas/química
18.
Hum Mol Genet ; 23(8): 2055-77, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24282027

RESUMO

Mutations in LRRK2 cause autosomal dominant Parkinson's disease (PD). LRRK2 encodes a multi-domain protein containing GTPase and kinase domains, and putative protein-protein interaction domains. Familial PD mutations alter the GTPase and kinase activity of LRRK2 in vitro. LRRK2 is suggested to regulate a number of cellular pathways although the underlying mechanisms are poorly understood. To explore such mechanisms, it has proved informative to identify LRRK2-interacting proteins, some of which serve as LRRK2 kinase substrates. Here, we identify common interactions of LRRK2 with members of the dynamin GTPase superfamily. LRRK2 interacts with dynamin 1-3 that mediate membrane scission in clathrin-mediated endocytosis and with dynamin-related proteins that mediate mitochondrial fission (Drp1) and fusion (mitofusins and OPA1). LRRK2 partially co-localizes with endosomal dynamin-1 or with mitofusins and OPA1 at mitochondrial membranes. The subcellular distribution and oligomeric complexes of dynamin GTPases are not altered by modulating LRRK2 in mouse brain, whereas mature OPA1 levels are reduced in G2019S PD brains. LRRK2 enhances mitofusin-1 GTP binding, whereas dynamin-1 and OPA1 serve as modest substrates of LRRK2-mediated phosphorylation in vitro. While dynamin GTPase orthologs are not required for LRRK2-induced toxicity in yeast, LRRK2 functionally interacts with dynamin-1 and mitofusin-1 in cultured neurons. LRRK2 attenuates neurite shortening induced by dynamin-1 by reducing its levels, whereas LRRK2 rescues impaired neurite outgrowth induced by mitofusin-1 potentially by reversing excessive mitochondrial fusion. Our study elucidates novel functional interactions of LRRK2 with dynamin-superfamily GTPases that implicate LRRK2 in the regulation of membrane dynamics important for endocytosis and mitochondrial morphology.


Assuntos
Dinamina III/metabolismo , Dinamina II/metabolismo , Dinamina I/metabolismo , Neuroblastoma/metabolismo , Doença de Parkinson/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Western Blotting , Estudos de Casos e Controles , Células Cultivadas , Endocitose , Feminino , GTP Fosfo-Hidrolases/metabolismo , Células HEK293 , Humanos , Técnicas Imunoenzimáticas , Imunoprecipitação , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Camundongos , Camundongos Knockout , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Membranas Mitocondriais/metabolismo , Mutação , Neuritos/metabolismo , Neuroblastoma/patologia , Neurônios/citologia , Neurônios/metabolismo , Doença de Parkinson/patologia , Fosforilação , Domínios e Motivos de Interação entre Proteínas , Ratos , Ratos Sprague-Dawley , Saccharomyces cerevisiae , Técnicas do Sistema de Duplo-Híbrido
19.
PLoS One ; 8(10): e77198, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24167564

RESUMO

The leucine-rich repeat kinase 2 (LRRK2) gene was found to play a role in the pathogenesis of both familial and sporadic Parkinson's disease (PD). LRRK2 encodes a large multi-domain protein that is expressed in different tissues. To date, the physiological and pathological functions of LRRK2 are not clearly defined. In this study we have explored the role of LRRK2 in controlling vesicle trafficking in different cellular or animal models and using various readouts. In neuronal cells, the presence of LRRK2(G2019S) pathological mutant determines increased extracellular dopamine levels either under basal conditions or upon nicotine stimulation. Moreover, mutant LRRK2 affects the levels of dopamine receptor D1 on the membrane surface in neuronal cells or animal models. Ultrastructural analysis of PC12-derived cells expressing mutant LRRK2(G2019S) shows an altered intracellular vesicle distribution. Taken together, our results point to the key role of LRRK2 to control vesicle trafficking in neuronal cells.


Assuntos
Neurônios/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Dopamina D1/metabolismo , Substituição de Aminoácidos , Animais , Modelos Animais de Doenças , Dopamina/genética , Dopamina/metabolismo , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Camundongos , Mutação de Sentido Incorreto , Neurônios/patologia , Células PC12 , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Proteínas Serina-Treonina Quinases/genética , Transporte Proteico/genética , Ratos , Receptores de Dopamina D1/genética
20.
Biochem Soc Trans ; 40(5): 1074-9, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22988868

RESUMO

Mutations in the LRRK2 (leucine-rich repeat kinase 2) gene are the most frequent genetic cause of PD (Parkinson's disease), and these mutations play important roles in sporadic PD. The LRRK2 protein contains GTPase and kinase domains and several protein-protein interaction domains. The kinase and GTPase activity of LRRK2 seem to be important in regulating LRRK2-dependent cellular signalling pathways. LRRK2's GTPase and kinase domains may reciprocally regulate each other to direct LRRK2's ultimate function. Although most LRRK2 investigations are centred on LRRK2's kinase activity, the present review focuses on the function of LRRK2's GTPase activity in LRRK2 physiology and pathophysiology.


Assuntos
GTP Fosfo-Hidrolases/metabolismo , Doença de Parkinson/enzimologia , Doença de Parkinson/patologia , Proteínas Serina-Treonina Quinases/metabolismo , GTP Fosfo-Hidrolases/genética , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Mutação , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Proteínas Serina-Treonina Quinases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...