Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 61(42): e202211151, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36018802

RESUMO

Antiperovskites have been studied since the 1980s because of their rich physical and chemical properties, but their linear and second-order nonlinear optical responses remain largely unknown. Here we report a new polar crystal, Cs3 Cl(HC3 N3 S3 ) (I), which features a quasi-one-dimensional antiperovskite structure composed of ClCs6 polyhedra and A-site [HC3 N3 S3 ]2- rings. To our best knowledge, this kind of antiperovskite structure is reported for the first time. Remarkably, I exhibits a very strong nonlinear optical response up to 11.4 times that of the benchmark KH2 PO4 and exceptionally large birefringence of 0.52. The first-principles calculations and structural analyses reveal that [HC3 N3 S3 ]2- is the "material gene" while the antiperovskite structural feature making it in a favorable arrangement. This work provides a new structural platform for the rational design of integrated optoelectronic materials with linear and second-order nonlinear optical responses.

2.
ACS Appl Mater Interfaces ; 14(8): 10588-10593, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35168323

RESUMO

The phase matching ability is a key factor for nonlinear optical crystals to realize coherent output. Herein, a new design strategy combining ultraviolet and infrared functional groups into a ferroelectric was put forward. Thus, a phosphogermanate crystal, KGeOPO4, was designed and studied. It exhibits a wide transparency window (0.22-9.70 µm), a strong second harmonic generation response (5× KH2PO4), a high laser-induced damage threshold (1.61 GW/cm2), and the typical ferroelectricity (coercive field ∼ 9.8 kV/cm and remnant polarization ∼7.6 µC/cm2). In the infrared region, it could realize coherent output by the birefringence phase matching method, while it could generate ultraviolet coherent lights by the quasi-phase matching technique. Therefore, this work designs a promising ultraviolet-infrared nonlinear optical crystal and provides a new perspective for exploring nonlinear optical crystals.

3.
Dalton Trans ; 50(42): 15057-15061, 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34610068

RESUMO

Exploration of new types of borates is important because of their promising applications in diverse fields. Two new boroselenites, namely, M(B(SeO3)3)H2O (M = Al, Ga), which represent the first IIIA metal boroselenite, were synthesized by hydrothermal reactions. M(B(SeO3)3)H2O (M = Al, Ga) possesses a unique sandwich like double-layer structure formed by two 2D [MSe2O8]5- layers interconnected by 1D [BSeO5]3- chains. More interestingly, both compounds display large band gaps (4.86/4.79 eV) and moderate birefringences (Δn = 0.063/0.064 at 1064 nm) based on density functional theory (DFT) calculations.

4.
Inorg Chem ; 60(19): 14544-14549, 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34549955

RESUMO

It remains a challenge to develop UV nonlinear optical (NLO) crystals that can achieve a desirable trade-off on UV absorption edge, second harmonic generation (SHG), and birefringence. Here we report a thiosulfate UV NLO crystal of a 2D van der Waals layered structure, [C(NH2)3]2SO3S. Remarkably, this thiosulfate realizes the desired trade-off, with a short absorption edge of 254 nm, a strong SHG response of approximately 2.8 times that of the benchmark KH2PO4, and a sufficient birefringence of 0.073 at the wavelength of 546 nm. In addition, it exhibits strong in-plane anisotropy of the SHG intensity. According to the first-principles calculations, the non-π-conjugated [SO3S]2- anion is the dominant SHG functional gene, while the π-conjugated [C(NH2)3]+ cation serves as the functional gene of birefringence. This is different from common UV NLO materials whose functionals of SHG and birefringence are the same. These findings indicate that combining different function genes may be an effective strategy to develop outstanding NLO materials with the desirable property trade-off.

5.
J Phys Chem Lett ; 12(34): 8280-8284, 2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34425677

RESUMO

Deep-ultraviolet (deep-UV) (wavelengths of <200 nm) nonlinear optical (NLO) materials are playing an increasingly important role because of their significant technological applications in advanced scientific instruments. In recent years, the non-π-conjugated systems have received extensive attention as new emerging sources of deep-UV NLO materials. Here, a new non-π-conjugated deep-UV NLO material, K2Zn3(SO4)(HSO4)2F4, has been successfully obtained by the hydrothermal method. It has a layered structure formed by [Zn3(SO4)(HSO4)2F3]∞ layers bridged via K-O and K-F bonds. Powder second-harmonic generation shows that K2Zn3(SO4)(HSO4)2F4 can achieve phase matching, and the response is ∼0.3 times that of KH2PO4. Remarkably, the single-crystal transmittance spectrum confirms that the absorption edge of K2Zn3(SO4)(HSO4)2F4 is below 200 nm, and the experimentally measured birefringence is 0.0126 at λ = 546 nm. In-depth first-principles calculations illustrate well the microscopic origin of the optical properties. This work enriches the structrual diversity of non-π-conjugated deep-UV NLO materials.

6.
Chem Commun (Camb) ; 57(54): 6668-6671, 2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34132255

RESUMO

Birefringent materials are vital materials to modulate the polarization of light, and play a key role in plorization devices such as linear optical devices, optical communication devices, and fiber optic sensors. It is still a challenge to design excellent birefringent materials. Herein, we report an organic-inorganic hybrid oxalate birefringent material, (CN4H7)SbC2O4F2(H2O)0.5, by introducing organic delocalized π-conjugated [CN4H7]+ and [C2O4]2- groups, and stereochemical active inorganic SbO4F2 polyhedra. (CN4H7)SbC2O4F2(H2O)0.5 exhibits a large birefringence (Δn = 0.126@546 nm) that is almost equal to that of the well-known birefringent material α-BaB2O4. Theoretical calculations reveal that the distinguished birefringence should stem from the synergistic arrangement of π-conjugated [CN4H7]+ and [C2O4]2- planar groups, and highly distorted SbO4F2 polyhedra with a stereochemically active lone pair. The synergistic effect of π-conjugated systems and the lone pair electrons greatly boosts the birefringence, which is helpful for the development of high-performance birefringent materials.

7.
ACS Appl Mater Interfaces ; 12(38): 42942-42948, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32833420

RESUMO

Nonlinear optical crystals play important roles in modern laser science and technology. However, the design and growth of new nonlinear optical (NLO) materials is still a challenging issue for researchers. Due to the excellent performance of Mg3B7O13Cl crystal, we paid attention to the optimization of its structure, in order to find new NLO materials with favorable properties. Here, Zn3B7O13Cl crystals were obtained by a high-temperature solution method. Its structure was determined to be the trigonal symmetry with a polar space group of R3c, which is more highly symmetric than that of Mg3B7O13Cl (Pca21). The experimental and theoretical investigations demonstrated that the title compound exhibits a short absorption cutoff (band gap ∼6.53 eV), moderate SHG responses (2.2 times that of KDP at 1064 nm), and the improved birefringence, which results from the large distortion and anisotropy of borate groups and zinc polyhedrons. Therefore, the structural modification of Mg3B7O13Cl by zinc cations achieves a balance between the deep-ultraviolet transparency, the nonlinear optical effect, and the moderate birefringence, which is very significant for the design of practical NLO materials.

8.
ACS Appl Mater Interfaces ; 12(4): 4632-4637, 2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-31909965

RESUMO

M2B5O9X is a prominent family with excellent nonlinear optical (NLO) responses, just as the Pb2B5O9I crystal with a large second harmonic generation (SHG) of 13.5 times that of KH2PO4. However, most of these compounds are limited to ultraviolet and visible regions because of their long absorption edge (small band gap). Here, we report two members of this family, which change the situation. Using a high-temperature solution method, we obtain Ca2B5O9Cl and Sr2B5O9Cl crystals, which exhibit a deep-ultraviolet (DUV) absorption edge of 170 nm (band gap ≈ 7.29 eV). It is an important breakthrough in the DUV transparency of the M2B5O9X family. Furthermore, Ca2B5O9Cl crystals display a phase-matching SHG response under a 1064 nm laser, which is further confirmed by the balance between the suitable birefringence and the small dispersion of refractive indexes in the wavelength range of 1064-532 nm. Therefore, they are promising DUV transparency windows and NLO candidates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...