Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 296
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39103668

RESUMO

BACKGROUND: The role of selinexor, a targeted inhibitor of exportin 1 (XPO1), in the treatment of cholangiocarcinoma is not yet fully understood. This study conducted comprehensive in vitro and in vivo investigations to elucidate the effects of selinexor on cholangiocarcinoma, with a focus on its mechanistic relationship with the cellular localization of Paternally Expressed Gene 3 (PEG3). METHODS: A patient-derived xenograft (PDX) model was established using samples from a cholangiocarcinoma patient in immunodeficient mice to assess the in vivo effects of selinexor. Additionally, cholangiocarcinoma cell lines HuCC-T1 and BRE were cultured to evaluate selinexor's impact on cell proliferation, invasion, migration, cell cycle, and apoptosis. HuCC-T1 cells were also implanted in immunodeficient mice for further investigation. Immunofluorescence and Western blotting were employed to observe the expression and localization of the PEG3 protein. RESULTS: The results demonstrated that selinexor significantly inhibited tumor growth in the cholangiocarcinoma PDX model and promoted the accumulation of PEG3 protein within the nuclei of tumor cells. In vitro experiments showed that selinexor effectively suppressed cholangiocarcinoma cell proliferation, invasion, and migration, while also impeding the cell cycle and inducing apoptosis. Notably, selinexor markedly facilitated the nuclear accumulation of PEG3 protein in cholangiocarcinoma cells. However, when PEG3 expression was knocked down, the effects of selinexor on cholangiocarcinoma were significantly reversed. CONCLUSION: These findings suggest that selinexor inhibits the progression of cholangiocarcinoma by targeting XPO1 and promoting the nuclear accumulation of PEG3 protein, thereby hindering the cell cycle and inducing apoptosis.

2.
Front Mol Neurosci ; 17: 1405109, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39081296

RESUMO

Introduction: myo7aa, the homolog of the human Usher 1B syndrome pathogenic gene, myo7A, plays an important role in stereociliary development and maintenance, therefore, is critical for hearing and balance. However, the molecular mechanisms that myo7aa regulate hearing and balance still need to be studied. Methods: In this study, we generated two independent zebrafish myo7aa knockout lines using CRISPR/Cas9 technology. To investigate the effects of myo7aa on hearing, YO-PRO-1 staining and startle response assay were used. To gain insight into the specific molecular mechanisms by which myo7aa affects hearing, transcriptome sequencing and bioinformatics analysis were employed. Results: Our study showed that hair cells of myo7aa-/- zebrafish can not take up YO-PRO-1 fluorescent dye and are insensitive to acoustic stimulation in myo7aa-/- zebrafish compared to wild type. Genes related to the Rho GTPase signaling pathway, such as arhgap33, dab2ip, and arghef40, are significantly down-regulated in myo7aa-/- zebrafish embryos at 3 dpf. GTP and ATP compensation can partially rescue the hair cell defects in myo7aa knockout zebrafish. Discussion: Our findings suggest that zebrafish myo7aa affects congenital hearing by regulating Rho GTPase signaling, and loss of myo7aa leads to abnormal Rho GTPase signaling and impairs hair cell function. myo7aa, myo7A, arhgap33, dab2ip, arghef40 and myo7aa-/- fonts in the abstract are italicized. -/- is a superscript format.

3.
J Exp Clin Cancer Res ; 43(1): 210, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39075504

RESUMO

BACKGROUND: It has been proposed that anti-angiogenesis therapy could induce tumor "vascular normalization" and further enhance the efficacy of chemotherapy, radiotherapy, target therapy, and immunotherapy for nearly twenty years. However, the detailed molecular mechanism of this phenomenon is still obscure. METHOD: Overexpression and knockout of CCL28 in human lung adenocarcinoma cell line A549 and murine lung adenocarcinoma cell line LLC, respectively, were utilized to establish mouse models. Single-cell sequencing was performed to analyze the proportion of different cell clusters and metabolic changes in the tumor microenvironment (TME). Immunofluorescence and multiplex immunohistochemistry were conducted in murine tumor tissues and clinical biopsy samples to assess the percentage of pericytes coverage. Primary pericytes were isolated from lung adenocarcinoma tumor tissues using magnetic-activated cell sorting (MACS). These pericytes were then treated with recombinant human CCL28 protein, followed by transwell migration assays and RNA sequencing analysis. Changes in the secretome and metabolome were examined, and verification of retinoic acid metabolism alterations in pericytes was conducted using quantitative real-time PCR, western blotting, and LC-MS technology. Chromatin immunoprecipitation followed by quantitative PCR (ChIP-qPCR) was employed to validate the transcriptional regulatory ability and affinity of RXRα to specific sites at the ANGPT1 promoter. RESULTS: Our study showed that after undergoing anti-angiogenesis treatment, the tumor exhibited a state of ischemia and hypoxia, leading to an upregulation in the expression of CCL28 in hypoxic lung adenocarcinoma cells by the hypoxia-sensitive transcription factor CEBPB. Increased CCL28 could promote tumor vascular normalization through recruiting and metabolic reprogramming pericytes in the tumor microenvironment. Mechanistically, CCL28 modified the retinoic acid (RA) metabolism and increased ANGPT1 expression via RXRα in pericytes, thereby enhancing the stability of endothelial cells. CONCLUSION: We reported the details of the molecular mechanisms of "vascular normalization" after anti-angiogenesis therapy for the first time. Our work might provide a prospective molecular marker for guiding the clinical arrangement of combination therapy between anti-angiogenesis treatment and other therapies.


Assuntos
Adenocarcinoma de Pulmão , Angiopoietina-1 , Quimiocinas CC , Neoplasias Pulmonares , Pericitos , Pericitos/metabolismo , Camundongos , Humanos , Animais , Angiopoietina-1/metabolismo , Angiopoietina-1/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/tratamento farmacológico , Quimiocinas CC/metabolismo , Quimiocinas CC/genética , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Microambiente Tumoral , Neovascularização Patológica/metabolismo , Linhagem Celular Tumoral
4.
Sci Total Environ ; 947: 174433, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38960153

RESUMO

A significant knowledge gap exists regarding the impact of soil organic matter on the bioavailability of Ag2S-NPs (environmentally relevant forms of Ag-NPs) in soil-earthworm-plant systems. This study used two soils with varying organic matter content, both with and without earthworms, to investigate the bioavailability of Ag2S-NPs. The findings revealed an 80 % increase in Ag bioaccessibility to soybeans in soils with high organic matter content compared to soils with low organic matter. Additionally, the presence of earthworms significantly increased Cl concentrations from 24.3-62.2 mg L-1 to 80.1-147.2 mg L-1, triggering the elevated bioavailability of Ag. Interestingly, Ag2S-NPs eliminated the stimulative effects of earthworms on plant nutrient uptake. In the presence of earthworms, the high organic matter soil amended with Ag2S-NPs exhibited lower concentrations of essential elements (Ca, Cu, Fe, K, and P) in plant tissues compared to soils without earthworms. Our study presents evidence of the transformation of Ag2S-NPs into Ag-NPs across various soil solutions, resulting in the formation of Ag nanoparticle complexes. Particularly noteworthy is the significant reduction in particle sizes in soils incubated with earthworms and high organic matter content, from 85.0 nm to 40.2 nm. Notably, in the rhizosphere soil, a decrease in the relative abundance of nutrient cycling-related phyla was observed, with reductions of 18.5 % for Proteobacteria and 30.0 % for Actinobacteriota. These findings offer valuable insights into the biological and biochemical consequences of Ag2S-NP exposure on earthworm-mediated plant nutrient acquisition.


Assuntos
Glycine max , Nanopartículas Metálicas , Oligoquetos , Compostos de Prata , Poluentes do Solo , Solo , Oligoquetos/metabolismo , Oligoquetos/fisiologia , Animais , Solo/química , Poluentes do Solo/metabolismo , Poluentes do Solo/análise , Nutrientes/metabolismo
5.
Front Pharmacol ; 15: 1332036, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38835658

RESUMO

We previously revealed that Cang-ai volatile oil (CAVO) regulates T-cell activity, enhancing the immune response in people with chronic respiratory diseases. However, the effects of CAVO on allergic rhinitis (AR) have not been investigated. Herein, we established an ovalbumin (OVA)-induced AR rat model to determine these effects. Sprague-Dawley (SD) rats were exposed to OVA for 3 weeks. CAVO or loratadine (positive control) was given orally once daily for 2 weeks to OVA-exposed rats. Behavior modeling nasal allergies was observed. Nasal mucosa, serum, and spleen samples of AR rats were analyzed. CAVO treatment significantly reduced the number of nose rubs and sneezes, and ameliorated several hallmarks of nasal mucosa tissue remodeling: inflammation, eosinophilic infiltration, goblet cell metaplasia, and mast cell hyperplasia. CAVO administration markedly upregulated expressions of interferon-γ, interleukin (IL)-2, and IL-12, and downregulated expressions of serum tumor necrosis factor-α, IL-4, IL-5, IL-6, IL-13, immunoglobulin-E, and histamine. CAVO therapy also increased production of IFN-γ and T-helper type 1 (Th1)-specific T-box transcription factor (T-bet) of the cluster of differentiation-4+ T-cells in splenic lymphocytes, and protein and mRNA expressions of T-bet in nasal mucosa. In contrast, levels of the Th2 cytokine IL-4 and Th2-specific transcription factor GATA binding protein-3 were suppressed by CAVO. These cumulative findings demonstrate that CAVO therapy can alleviate AR by regulating the balance between Th1 and Th2 cells.

6.
Pharmaceuticals (Basel) ; 17(6)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38931442

RESUMO

Polyphenols are the most prevalent naturally occurring phytochemicals in the human diet and range in complexity from simple molecules to high-molecular-weight polymers. They have a broad range of chemical structures and are generally categorized as "neuroprotective", "anti-inflammatory", and "antioxidant" given their main function of halting disease onset and promoting health. Research has shown that some polyphenols and their metabolites can penetrate the blood-brain barrier and hence increase neuroprotective signaling and neurohormonal effects to provide anti-inflammatory and antioxidant effects. Therefore, multi-targeted modulation of polyphenols may prevent the progression of neuropsychiatric disorders and provide a new practical therapeutic strategy for difficult-to-treat neuropsychiatric disorders. Therefore, multi-target modulation of polyphenols has the potential to prevent the progression of neuropsychiatric disorders and provide a new practical therapeutic strategy for such nervous system diseases. Herein, we review the therapeutic benefits of polyphenols on autism-spectrum disorders, anxiety disorders, depression, and sleep disorders, along with in vitro and ex vivo experimental and clinical trials. Although their methods of action are still under investigation, polyphenols are still seldom employed directly as therapeutic agents for nervous system disorders. Comprehensive mechanistic investigations and large-scale multicenter randomized controlled trials are required to properly evaluate the safety, effectiveness, and side effects of polyphenols.

7.
Cells ; 13(10)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38786060

RESUMO

Cells defend against oxidative stress by enhancing antioxidant capacity, including stress-activated metabolic alterations, but the underlying intracellular signaling mechanisms remain unclear. This paper reports that immunoglobulin superfamily containing leucine-rich repeat (ISLR) functions as a redox sensor that responds to reactive oxygen species (ROS) stimulation and modulates the antioxidant capacity by suppressing pyruvate kinase isozyme M2 (PKM2) activity. Following oxidative stress, ISLR perceives ROS stimulation through its cysteine residue 19, and rapidly degrades in the autophagy-lysosome pathway. The downregulated ISLR enhances the antioxidant capacity by promoting the tetramerization of PKM2, and then enhancing the pyruvate kinase activity, PKM2-mediated glycolysis is crucial to the ISLR-mediated antioxidant capacity. In addition, our results demonstrated that, in triple-negative breast cancer, cisplatin treatment reduced the level of ISLR, and PKM2 inhibition sensitizes tumors to cisplatin by enhancing ROS production; and argued that PKM2 inhibition can synergize with cisplatin to limit tumor growth. Our results demonstrate a molecular mechanism by which cells respond to oxidative stress and modulate the redox balance.


Assuntos
Antioxidantes , Oxirredução , Estresse Oxidativo , Espécies Reativas de Oxigênio , Humanos , Oxirredução/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Animais , Cisplatino/farmacologia , Feminino , Proteínas de Membrana/metabolismo , Hormônios Tireóideos/metabolismo , Proteínas de Ligação a Hormônio da Tireoide , Camundongos , Piruvato Quinase/metabolismo , Glicólise/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Proteínas de Transporte/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/enzimologia
8.
Biochem Genet ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753026

RESUMO

The Stat (signal transducer and activator of transcription) gene family plays a vital role in regulating immunity and the processes of cellular proliferation, differentiation, and apoptosis across diverse organisms. Although the functions of Stat genes in immunity have been extensively documented in many mammals, limited data are available for reptiles. We used phylogenetic analysis to identify eight putative members of the Stat family (Stat1-1, Stat1-2, Stat2, Stat3, Stat4, Stat5b, Stat6-1, and Stat6-2) within the genome of M. reevesii, a freshwater turtle found in East Asia. Sequence analysis showed that the Stat genes contain four conserved structural domains protein interaction domain, coiled-coil domain, DNA-binding domain, and Src homology domain 2. In addition, Stat1, Stat2, and Stat6 contain TAZ2bind, Apolipo_F, and TALPID3 structural domains. The mRNA levels of Stat genes were upregulated in spleen tissues at 4, 8, 12, and 16 h after administration of lipopolysaccharide, a potent activator of the immune system. Stat5b expression at 12-h LPS post-injection exhibited the most substantial difference from the control. The expression of Stat5b in spleen tissue cellular was verified by immunofluorescence. These results suggest that Stat5b plays a role in the immune response of M. reevesii and may prove to be as a positive marker of an immune response in future studies.

9.
Vet Parasitol ; 329: 110194, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38749123

RESUMO

To investigate the therapeutic effect of toosendanin (TSN) against Eimeria tenella (E. tenella) in chicks. In this experiment, a chick model of artificially induced E. tenella infection was established. The anti-coccidial effect was investigated by treating different doses of TSN. A preliminary mechanism of action was conducted, using cecal cell apoptosis as a starting point. TSN at the concentration of 5 mg/kg BW showed the best effect against E. tenella with the ACI value of 164.35. In addition, TSN reduced pathological damage to cecal tissue, increased the secretion of glycogen and mucus in cecal mucosa, and enhanced the mucosal protective effect. It also elevated the levels of IFN-γ, IL-2, and IgG in serum, and raised the sIgA content in cecal tissue of infected chicks, thereby improving overall immune function. TSN was observed to promote the apoptosis of cecum tissue cells by TUNEL staining analysis. Immunohistochemistry analysis revealed that in TSN-treated groups, the expression of Caspase-3 and Bax was elevated, while the expression of Bcl-2 was reduced. TSN induced apoptosis in host cells by dose-dependently decreasing the Bcl-2/Bax ratio and upregulating Caspase-3 expression. In summary, TSN exhibited significant anticoccidial efficacy by facilitating apoptosis in host cecal cells, with the most pronounced effect observed at a dosage of 5 mg/kg body weight.


Assuntos
Apoptose , Ceco , Galinhas , Coccidiose , Eimeria tenella , Doenças das Aves Domésticas , Animais , Eimeria tenella/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Ceco/parasitologia , Coccidiose/veterinária , Coccidiose/tratamento farmacológico , Coccidiose/parasitologia , Doenças das Aves Domésticas/parasitologia , Doenças das Aves Domésticas/tratamento farmacológico , Coccidiostáticos/farmacologia , Coccidiostáticos/uso terapêutico
10.
Bone Res ; 12(1): 33, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811544

RESUMO

Wnt/ß-catenin signaling is critical for various cellular processes in multiple cell types, including osteoblast (OB) differentiation and function. Exactly how Wnt/ß-catenin signaling is regulated in OBs remain elusive. ATP6AP2, an accessory subunit of V-ATPase, plays important roles in multiple cell types/organs and multiple signaling pathways. However, little is known whether and how ATP6AP2 in OBs regulates Wnt/ß-catenin signaling and bone formation. Here we provide evidence for ATP6AP2 in the OB-lineage cells to promote OB-mediated bone formation and bone homeostasis selectively in the trabecular bone regions. Conditionally knocking out (CKO) ATP6AP2 in the OB-lineage cells (Atp6ap2Ocn-Cre) reduced trabecular, but not cortical, bone formation and bone mass. Proteomic and cellular biochemical studies revealed that LRP6 and N-cadherin were reduced in ATP6AP2-KO BMSCs and OBs, but not osteocytes. Additional in vitro and in vivo studies revealed impaired ß-catenin signaling in ATP6AP2-KO BMSCs and OBs, but not osteocytes, under both basal and Wnt stimulated conditions, although LRP5 was decreased in ATP6AP2-KO osteocytes, but not BMSCs. Further cell biological studies uncovered that osteoblastic ATP6AP2 is not required for Wnt3a suppression of ß-catenin phosphorylation, but necessary for LRP6/ß-catenin and N-cadherin/ß-catenin protein complex distribution at the cell membrane, thus preventing their degradation. Expression of active ß-catenin diminished the OB differentiation deficit in ATP6AP2-KO BMSCs. Taken together, these results support the view for ATP6AP2 as a critical regulator of both LRP6 and N-cadherin protein trafficking and stability, and thus regulating ß-catenin levels, demonstrating an un-recognized function of osteoblastic ATP6AP2 in promoting Wnt/LRP6/ß-catenin signaling and trabecular bone formation.


Assuntos
Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Camundongos Knockout , Osteoblastos , Osteogênese , ATPases Vacuolares Próton-Translocadoras , Via de Sinalização Wnt , beta Catenina , Animais , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Via de Sinalização Wnt/fisiologia , beta Catenina/metabolismo , beta Catenina/genética , Osteoblastos/metabolismo , Osteogênese/fisiologia , Camundongos , ATPases Vacuolares Próton-Translocadoras/metabolismo , ATPases Vacuolares Próton-Translocadoras/genética , Transporte Proteico , Diferenciação Celular , Osteócitos/metabolismo , Receptor de Pró-Renina
11.
J Agric Food Chem ; 72(14): 8180-8188, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38556749

RESUMO

Juvenile hormone binding protein (JHBP) is a key regulator of JH signaling, and crosstalk between JH and 20-hydroxyecdysone (20E) can activate and fine-tune the mitogen-activated protein kinase cascade, leading to resistance to insecticidal proteins from Bacillis thuringiensis (Bt). However, the involvement of JHBP in the Bt Cry1Ac resistance of Plutella xylostella remains unclear. Here, we cloned a full-length cDNA encoding JHBP, and quantitative real-time PCR (qPCR) analysis showed that the expression of the PxJHBP gene in the midgut of the Cry1Ac-susceptible strain was significantly higher than that of the Cry1Ac-resistant strain. Furthermore, CRISPR/Cas9-mediated knockout of the PxJHBP gene significantly increased Cry1Ac susceptibility, resulting in a significantly shorter lifespan and reduced fertility. These results demonstrate that PxJHBP plays a critical role in the resistance to Cry1Ac protoxin and in the regulation of physiological metabolic processes associated with reproduction in adult females, providing valuable insights to improve management strategies of P. xylostella.


Assuntos
Bacillus thuringiensis , Mariposas , Animais , Feminino , Mariposas/genética , Mariposas/metabolismo , Larva/metabolismo , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Longevidade , Sistemas CRISPR-Cas , Endotoxinas/genética , Endotoxinas/metabolismo , Toxinas de Bacillus thuringiensis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Resistência a Inseticidas/genética
13.
RNA Biol ; 21(1): 1-10, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38531838

RESUMO

Transgene silencing is a common phenomenon observed in Caenorhabditis elegans, particularly in the germline, but the precise mechanisms underlying this process remain elusive. Through an analysis of the transcription factors profile of C. elegans, we discovered that the expression of several transgenic reporter lines exhibited tissue-specific silencing, specifically in the intestine of C. elegans. Notably, this silencing could be reversed in mutants defective in endogenous RNA interference (RNAi). Further investigation using knock-in strains revealed that these intestine-silent genes were indeed expressed in vivo, indicating that the organism itself regulates the intestine-specific silencing. This tissue-specific silencing appears to be mediated through the endo-RNAi pathway, with the main factors of this pathway, mut-2 and mut-16, are significantly enriched in the intestine. Additionally, histone modification factors, such as met-2, are involved in this silencing mechanism. Given the crucial role of the intestine in reproduction alongside the germline, the transgene silencing observed in the intestine reflects the self-protective mechanisms employed by the organisms. In summary, our study proposed that compared to other tissues, the transgenic silencing of intestine is specifically regulated by the endo-RNAi pathway.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Interferência de RNA , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , RNA de Cadeia Dupla/metabolismo , Transgenes , Animais Geneticamente Modificados/metabolismo , RNA Interferente Pequeno/genética
14.
J Ethnopharmacol ; 328: 117974, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38467317

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Acute alcohol intoxication is one of the leading causes of coma. A well-regarded Chinese herbal formula, known as An-Gong-Niu-Huang-Wan (AGNHW), has garnered recognition for its efficacy in treating various brain disorders associated with impaired consciousness, including acute alcohol-induced coma. Despite its clinical effectiveness, the scientific community lacks comprehensive research on the mechanistic aspects of AGNHW's impact on the electroencephalogram (EEG) patterns observed during alcohol-induced coma. Gaining a deeper understanding of AGNHW's mechanism of action in relation to EEG characteristics would hold immense importance, serving as a solid foundation for further advancing its clinical therapeutic application. AIM OF THE STUDY: The study sought to investigate the impact of AGNHW on EEG activity and sleep EEG patterns in rats with alcoholic-induced coma. MATERIALS AND METHODS: A rat model of alcohol-induced coma was used to examine the effects of AGNHW on EEG patterns. Male Sprague-Dawley rats were intraperitoneally injected with 32% ethanol to induce a coma, followed by treatment with AGNHW. Wireless electrodes were implanted in the cortex of the rats to obtain EEG signals. Our analysis focused on evaluating alterations in the Rat Coma Scale (RCS), as well as assessing changes in the frequency and distribution of EEG patterns, sleep rhythms, and body temperature subsequent to AGNHW treatment. RESULTS: The study found a significant increase in the δ-band power ratio, as well as a decrease in RCS scores and ß-band power ratio after modeling. AGNHW treatment significantly reduced the δ-band power ratio and increased the ß-band power ratio compared to naloxone, suggesting its superior arousal effects. The results also revealed a decrease in the time proportion of WAKE and REM EEG patterns after modeling, accompanied by a significant increase in the time proportion of NREM EEG patterns. Both naloxone and AGNHW effectively counteracted the disordered sleep EEG patterns. Additionally, AGNHW was more effective than naloxone in improving hypothermia caused by acute alcohol poisoning in rats. CONCLUSION: Our study provides evidence for the arousal effects of AGNHW in alcohol-induced coma rats. It also suggests a potential role for AGNHW in regulating post-comatose sleep rhythm disorders.


Assuntos
Intoxicação Alcoólica , Coma , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Coma/induzido quimicamente , Coma/tratamento farmacológico , Eletroencefalografia , Nível de Alerta/fisiologia , Sono , Naloxona/farmacologia
15.
J Ethnopharmacol ; 326: 117867, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38342155

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Cang-ai volatile oil (CAVO) is an aromatic Chinese medicine with potent antibacterial and immune regulatory properties. While CAVO has been used to treat upper respiratory tract infections, depression, otomycosis, and bacterial infections in the skin, its effect on psoriasis is unknown. AIM OF THE STUDY: This study explores the effect and mechanism of CAVO in psoriasis intervention. MATERIAL AND METHODS: The effect of CAVO on the expression of IL-6 and IL-1ß was assessed in TNF-α-induced HaCaT cells using enzyme-linked immunosorbent assay (ELISA). Mice were given imiquimod (IMQ) and administered orally with different CAVO doses (0.03 and 0.06 g/kg) for 5 days. The levels of inflammatory cytokines related to group-3 innate lymphoid cells (ILC3s) in the skin were assessed using hematoxylin and eosin (H&E) staining, ELISA, and western blotting (WB). The frequency of ILC3s in mice splenocytes and skin cells was evaluated using flow cytometry. RESULTS: The results demonstrated that CAVO decreased the expression of IL-6 and IL-1ß in TNF-α- induced HaCaT cells. CAVO significantly reduced the severity of psoriatic symptoms in IMQ-induced mice. The expression of inflammatory cytokines in the skin, such as IL-1ß, IL-6, IL-8, IL-22, IL-23, and IL-17 A were decreased, whereas IL-10 levels were increased. The mRNA expressions of TNF-α, IL-23 A, IL-23 R, IL-22, IL-17 A, and RORγt were down-regulated in skin tissues. CAVO also decreased the levels of NF-κB, STAT3, and JAK2 proteins. CONCLUSIONS: CAVO potentially inhibits ILC3s activation to relieve IMQ-induced psoriasis in mice. These effects might be attributed to inhibiting the activation of NF-κB, STAT3, and JAK2 signaling pathways.


Assuntos
Interleucina-17 , Psoríase , Animais , Camundongos , Imiquimode , Interleucina-17/genética , Interleucina-17/metabolismo , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Imunidade Inata , Interleucina-6/metabolismo , Linfócitos/metabolismo , Pele , Psoríase/induzido quimicamente , Psoríase/tratamento farmacológico , Citocinas/metabolismo , Interleucina-23/metabolismo , Camundongos Endogâmicos BALB C , Modelos Animais de Doenças
16.
J Biomol Struct Dyn ; : 1-18, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38197809

RESUMO

Xiangqin Jiere granules (XQJRG) is a proprietary Chinese medicine treating children's colds and fevers, but its mechanism of action is unclear. The aim of this study was to explore the antipyretic mechanisms of XQJRG based on pharmacodynamics, non-targeted metabolomics, network pharmacology, molecular biology experiments, molecular docking, and molecular dynamics (MD) simulation. Firstly, the yeast-induced fever model was constructed in young rats to study antipyretic effect of XQJRG. Metabolomics and network pharmacology studies were performed to identify the key compounds, targets and pathways involved in the antipyretic of XQJRG. Subsequently, MetScape was used to jointly analyze targets from network pharmacology and metabolites from metabolomics. Finally, the key targets were validated by enzyme-linked immunosorbent assay (ELISA), and the affinity and stability of key ingredient and targets were evaluated by molecular docking and MD simulation. The animal experimental results showed that after XQJRG treatment, body temperature of febrile rats was significantly reduced, 13 metabolites were significantly modulated, and pathways of differential metabolite enrichment were mainly related to amino acid and lipid metabolism. Network pharmacology results indicated that quercetin and kaempferol were the key active components of XQJRG, TNF, AKT1, IL6, IL1B and PTGS2 were core targets. ELISA confirmed that XQJRG significantly reduced the plasma concentrations of IL-1ß, IL-6, and TNF-α, and the hypothalamic concentrations of COX-2 and PGE2. Molecular docking demonstrated that the binding energies of kaempferol to the core targets were all below -5.0 kcal/mol. MD simulation results showed that the binding free energies of TNF-kaempferol, IL6-kaempferol, IL1B-kaempferol and PTGS2-kaempferol were -87.86 kcal/mol, -70.41 kcal/mol, -69.95 kcal/mol and -106.67 kcal/mol, respectively. In conclusion, XQJRG has antipyretic effects on yeast-induced fever in young rats, and its antipyretic mechanisms may be related to the inhibition of peripheral pyrogenic cytokines release by constituents such as kaempferol, the reduction of hypothalamic fever mediator production, and the amelioration of disturbances in amino acid and lipid metabolism.Communicated by Ramaswamy H. Sarma.

17.
Vet Parasitol ; 326: 110098, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38194736

RESUMO

Ponazuril, a novel antiprotozoal drug in the class of triazine, has shown a promising application on apicomplexan infections in poultry and livestock. However, the effect and mechanism of action of ponazuril against Eimeria tenella (E. tenella) are unclear. The efficacy against E. tenella was initially studied by administering different doses of ponazuril in drinking water. The treated stage and site of ponazuril on E. tenella were observed through ultrastructural and histopathological analyses. Chicks were orally treated with a dose of 15 mg/kg body weight of ponazuril at different endogenous stages of E. tenella post-infection. According to the clinical study, the values of anticoccidial indices (ACI) were 157.0, 162.3, 196.9, 194.5, and 190.9, respectively, when the ponazuril was administered in drinking water at doses of 5, 10, 20, 40, and 50 mg/L for two consecutive days after infection. Among them, the 20 mg/L ponazuril group showed the best anticoccidial effect, which was superior to that of the toltrazuril treatment group, with an ACI value of 191.7. Histological analysis indicated that ponazuril effectively relieved cecal lesions, and decreased the number of merozoites. Transmission electron micrographs (TEM) observed that merozoites became irregular in shape, and some apparent protrusions of the outer membrane were presented especially the second-generation merozoites. Additionally, abnormalities in the development of WFBI and WFBII in the macrogametocyte were observed, which may affect the formation of the ovule wall. Moreover, merozoites in the treated group showed uneven and marginalized chromatin and mitochondrial swelling. These results suggested ponazuril is a potential anticoccidial drug, providing information on the mechanism of anticoccidial effects.


Assuntos
Coccidiose , Coccidiostáticos , Água Potável , Eimeria tenella , Doenças das Aves Domésticas , Animais , Coccidiostáticos/farmacologia , Coccidiostáticos/uso terapêutico , Coccidiose/tratamento farmacológico , Coccidiose/veterinária , Doenças das Aves Domésticas/tratamento farmacológico , Triazinas/farmacologia , Triazinas/uso terapêutico , Merozoítos , Galinhas , Resultado do Tratamento
18.
J Craniomaxillofac Surg ; 52(2): 260-268, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38182475

RESUMO

This study aimed to reveal the underlying mechanisms linking advanced oral squamous cell carcinoma (OSCC) with its comorbidities. Data extracted from the POROMS database included 448 advanced OSCC patients in stage III or IV (AJCC 8th) with primary tumors between August 2015 and August 2021. Time to diagnosis delay increased from 4.5, 5.3-6.5 months when the Adult Comorbidity Evaluation-27 (ACE-27) worsened from none, mild (RR: 1.155, 1.043-1.279; P = 0.006) to moderate-severe (RR: 1.431, 1.251-1.636; P < 0.001). With the number of comorbidities increased from 0, 1-2 (RR: 1.188, 1.078-1.310; P = 0.001) to 3 (RR: 1.563, 1.296-1.885; P < 0.001), the time to diagnosis delay increased from 4.5, 5.4-7.1 months. As the level and number of comorbidities increased, the likelihood of treatment completion gradually declined, especially in those older than 65 years (P = 0.003). The presence of comorbidity was an independent prognostic factor for disease-free survival (HR: 1.431, 1.022-2.005; P = 0.037). Comorbidities may lead to poorer prognosis by directly causing delays in diagnosis, limiting treatment options, and increasing the risk of death in advanced OSCC patients.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Adulto , Neoplasias Bucais/diagnóstico , Neoplasias Bucais/epidemiologia , Neoplasias Bucais/terapia , Carcinoma de Células Escamosas/diagnóstico , Carcinoma de Células Escamosas/epidemiologia , Carcinoma de Células Escamosas/terapia , Estudos Retrospectivos , Atraso no Tratamento , Prognóstico , Comorbidade , Carcinoma de Células Escamosas de Cabeça e Pescoço
19.
J Ethnopharmacol ; 321: 117565, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38081397

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Baiheqingjin Decoction (BHQJ), which consists of 7 traditional Chinese herbs including Baibu (Stemona tuberosa Lour.), Hezi (Terminalia chebula Retz.), Mahuang (Ephedra sinica Stapf.), Ziwan (Aster tataricus L. f.), Dilong (Pheretima), Sangbaipi (Morus alba L.), and Xianhecao (Agrimonia pilosa Ledeb.). BHQJ is commonly used for treating cough asthma, and variant cough-variant asthma as it, is effective in improving asthma symptoms and reducing airway inflammation. AIM OF THE STUDY: To investigate the mechanisms of BHQJ in treating allergic asthma. MATERIALS AND METHODS: We collected information about the components and targets of 6 Chinese medicines (excluding Pheretima) from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). Additionally, we obtained genes associated with asthma from six disease databases. To create a protein-protein interaction network, we conducted an intersection analysis using differentially expressed genes derived from RNA transcriptome data. Subsequently, we carried out Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses. To validate the findings from network pharmacology and transcriptomics, we established an allergic asthma mouse model induced by ovalbumin and conducted in vivo experiments. RESULTS: Using network pharmacology and transcriptomics analyses, we identified the pathways including the PI3K/AKT signaling pathway, and NF-κB signaling pathway. Among these, the involvement of the PI3K/AKT/NF-κB signaling pathway in various pathological processes of asthma, such as airway inflammation, smooth muscle contraction, and excessive mucus production, are well-documented. Histopathological examinations indicated that BHQJ had the potential to mitigate inflammatory cell infiltration and the excessive growth of goblet cells in the airways of asthmatic mice, consequently reducing mucus secretion. Results from Western blot demonstrated that BHQJ could inhibit the activation of the PI3K/AKT/NF-κB pathway at the protein levels. Enzyme-linked immunosorbent assay findings revealed that BHQJ could reduce the production of typical "type 2 asthma" cytokines and immunoglobulin (Ig) E in the blood. These discoveries imply that BHQJ has the potential to reduce the release of inflammatory cytokines and suppress the overactivation of the PI3K/AKT/NF-κB signaling pathway, thus offering a therapeutic approach for asthma. CONCLUSION: Our research offers initial insights into the fundamental mechanisms through which BHQJ treats asthma. This study reveals the potential mechanism of BHQJ in treating asthma, particularly its role in reducing inflammatory cytokines, mucus production, and cell infiltration, as well as inhibiting the expression of PI3K/AKT/P65 phosphorylated protein. These findings indicate the potential of BHQJ in treating asthma. In summary, our study provides preliminary insights into the asthma treatment mechanism of BHQJ and provides guidance for future research.


Assuntos
Asma , Medicamentos de Ervas Chinesas , Camundongos , Animais , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Líquido da Lavagem Broncoalveolar , Asma/patologia , Transdução de Sinais , Inflamação/tratamento farmacológico , Citocinas/metabolismo , Imunoglobulina E , Medicamentos de Ervas Chinesas/efeitos adversos
20.
Mol Nutr Food Res ; 68(4): e2300334, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38150643

RESUMO

SCOPE: Chronic liver diseases are clinically silent and responsible for significant morbidity and mortality worldwide. Jujube has displayed various biological activities. Here, the therapeutic effect of Lactobacillus acidophilus (L. acidophilus)-fermented jujube juice (FJJ) and the possible mechanism against chronic liver injury (CLI) in mice are further studied. METHODS AND RESULTS: After the CCl4 -induced CLI mice are separately treated with L. acidophilus (LA), unfermented jujube juice (UFJJ), and FJJ, FJJ but not LA or UFJJ suppresses the liver index. By using H&E staining, immunofluorescence staining, RT-PCR, and western blotting, it is shown that LA, UFJJ, and FJJ intervention ameliorate hepatocyte necrosis, inhibit the mRNA levels of pro-inflammatory (NLRP3, Caspase-1, IL-1ß, and TNF-α) and fibrosis-associated factors (TGF-ß1, LXRα, and MMP2). Also, FJJ displays significant protection against mucosal barrier damage in CLI mice. Among the three interventions, FJJ exhibits the best therapeutic effect, followed by UFJJ and LA. Furthermore, FJJ improves dysbiosis in CLI mice. CONCLUSIONS: This study suggests that FJJ exhibits a protective effect against CCl4 -induced CLI mice by inhibiting apoptosis and oxidative stress, regulating liver lipid metabolism, and improving gut microecology. Jujube juice fermentation with L. acidophilus can be a food-grade supplement in treating CLI and related liver diseases.


Assuntos
Hepatopatias , Ziziphus , Camundongos , Animais , Lactobacillus acidophilus/metabolismo , Apoptose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...