Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep Med ; 5(7): 101653, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39019009

RESUMO

Drug-induced liver injury (DILI) is a significant cause of acute liver failure (ALF) and liver transplantation in the Western world. Acetaminophen (APAP) overdose is a main contributor of DILI, leading to hepatocyte cell death through necrosis. Here, we identified that neddylation, an essential post-translational modification involved in the mitochondria function, was upregulated in liver biopsies from patients with APAP-induced liver injury (AILI) and in mice treated with an APAP overdose. MLN4924, an inhibitor of the neuronal precursor cell-expressed developmentally downregulated protein 8 (NEDD8)-activating enzyme (NAE-1), ameliorated necrosis and boosted liver regeneration in AILI. To understand how neddylation interferes in AILI, whole-body biotinylated NEDD8 (bioNEDD8) and ubiquitin (bioUB) transgenic mice were investigated under APAP overdose with and without MLN4924. The cytidine diphosphate diacylglycerol (CDP-DAG) synthase TAM41, responsible for producing cardiolipin essential for mitochondrial activity, was found modulated under AILI and restored its levels by inhibiting neddylation. Understanding this ubiquitin-like crosstalk in AILI is essential for developing promising targeted inhibitors for DILI treatment.


Assuntos
Acetaminofen , Cardiolipinas , Doença Hepática Induzida por Substâncias e Drogas , Ciclopentanos , Proteína NEDD8 , Pirimidinas , Acetaminofen/efeitos adversos , Animais , Proteína NEDD8/metabolismo , Proteína NEDD8/genética , Humanos , Pirimidinas/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Cardiolipinas/metabolismo , Camundongos , Ciclopentanos/farmacologia , Masculino , Fígado/metabolismo , Fígado/patologia , Fígado/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Hepatócitos/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/patologia , Transdução de Sinais/efeitos dos fármacos , Enzimas Ativadoras de Ubiquitina/metabolismo , Enzimas Ativadoras de Ubiquitina/genética , Enzimas Ativadoras de Ubiquitina/antagonistas & inibidores
2.
Cell Mol Biol Lett ; 29(1): 15, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38229033

RESUMO

BACKGROUND: The eukaryotic translation initiation protein eIF5A is a highly conserved and essential factor that plays a critical role in different physiological and pathological processes including stress response and cancer. Different proteomic studies suggest that eIF5A may be a small ubiquitin-like modifier (SUMO) substrate, but whether eIF5A is indeed SUMOylated and how relevant is this modification for eIF5A activities are still unknown. METHODS: SUMOylation was evaluated using in vitro SUMOylation assays, Histidine-tagged proteins purification from His6-SUMO2 transfected cells, and isolation of endogenously SUMOylated proteins using SUMO-binding entities (SUBES). Mutants were engineered by site-directed mutagenesis. Protein stability was measured by a cycloheximide chase assay. Protein localization was determined using immunofluorescence and cellular fractionation assays. The ability of eIF5A1 constructs to complement the growth of Saccharomyces cerevisiae strains harboring thermosensitive mutants of a yeast EIF5A homolog gene (HYP2) was analyzed. The polysome profile and the formation of stress granules in cells expressing Pab1-GFP (a stress granule marker) by immunofluorescence were determined in yeast cells subjected to heat shock. Cell growth and migration of pancreatic ductal adenocarcinoma PANC-1 cells overexpressing different eIF5A1 constructs were evaluated using crystal violet staining and transwell inserts, respectively. Statistical analysis was performed with GraphPad Software, using unpaired Student's t-test, or one-way or two-way analysis of variance (ANOVA). RESULTS: We found that eIF5A is modified by SUMO2 in vitro, in transfected cells and under endogenous conditions, revealing its physiological relevance. We identified several SUMO sites in eIF5A and found that SUMOylation modulates both the stability and the localization of eIF5A in mammalian cells. Interestingly, the SUMOylation of eIF5A responds to specific stresses, indicating that it is a regulated process. SUMOylation of eIF5A is conserved in yeast, the eIF5A SUMOylation mutants are unable to completely suppress the defects of HYP2 mutants, and SUMOylation of eIF5A is important for both stress granules formation and disassembly of polysomes induced by heat-shock. Moreover, mutation of the SUMOylation sites in eIF5A abolishes its promigratory and proproliferative activities in PANC-1 cells. CONCLUSIONS: SUMO2 conjugation to eIF5A is a stress-induced response implicated in the adaptation of yeast cells to heat-shock stress and required to promote the growth and migration of pancreatic ductal adenocarcinoma cells.


Assuntos
Adenocarcinoma , Saccharomyces cerevisiae , Animais , Humanos , Mamíferos , Proteômica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Sumoilação , Ubiquitina/metabolismo
4.
Cell Rep ; 42(8): 112925, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37552601

RESUMO

The neddylation inhibitor MLN4924/Pevonedistat is in clinical trials for multiple cancers. Efficacy is generally attributed to cullin RING ligase (CRL) inhibition, but the contribution of non-CRL targets is unknown. Here, CRISPR screens map MLN4924-monotherapy sensitivity in retinoblastoma to a classic DNA damage-induced p53/E2F3/BAX-dependent death effector network, which synergizes with Nutlin3a or Navitoclax. In monotherapy-resistant cells, MLN4924 plus standard-of-care topotecan overcomes resistance, but reduces DNA damage, instead harnessing ribosomal protein nucleolar-expulsion to engage an RPL11/p21/MYCN/E2F3/p53/BAX synergy network that exhibits extensive cross-regulation. Strikingly, unneddylatable RPL11 substitutes for MLN4924 to perturb nucleolar function and enhance topotecan efficacy. Orthotopic tumors exhibit complete responses while preserving visual function. Moreover, MLN4924 plus melphalan deploy this DNA damage-independent strategy to synergistically kill multiple myeloma cells. Thus, MLN4924 synergizes with standard-of-care drugs to unlock a nucleolar death effector network across cancer types implying broad therapeutic relevance.


Assuntos
Topotecan , Proteína Supressora de Tumor p53 , Proteína X Associada a bcl-2 , Linhagem Celular Tumoral , Ciclopentanos/farmacologia , Proteínas Ribossômicas , Apoptose , Proteína NEDD8
5.
Sci Adv ; 9(13): eabq7585, 2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-37000881

RESUMO

The elimination of aberrant inclusions is regarded as a therapeutic approach in neurodegeneration. In amyotrophic lateral sclerosis (ALS), mutations in proteins found within cytoplasmic condensates called stress granules (SGs) are linked to the formation of pathological SGs, aberrant protein inclusions, and neuronal toxicity. We found that inhibition of NEDP1, the enzyme that processes/deconjugates the ubiquitin-like molecule NEDD8, promotes the disassembly of physiological and pathological SGs. Reduction in poly(ADP-ribose) polymerase1 activity through hyper-NEDDylation is a key mechanism for the observed phenotype. These effects are related to improved cell survival in human cells, and in C. elegans, nedp1 deletion ameliorates ALS phenotypes related to animal motility. Our studies reveal NEDP1 as potential therapeutic target for ALS, correlated to the disassembly of pathological SGs.


Assuntos
Esclerose Lateral Amiotrófica , Animais , Humanos , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/genética , Caenorhabditis elegans/genética , Grânulos de Estresse , Ubiquitina , Fenótipo
6.
Methods Mol Biol ; 2602: 137-149, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36446972

RESUMO

The identification of modification sites for ubiquitin and ubiquitin-like modifiers is an essential step in the elucidation of controlled processes. The ubiquitin-like modifier NEDD8 is an important regulator of plethora of biological processes both under homeostatic and proteotoxic stress conditions. Here, we describe a detailed protocol for proteome-wide identification of NEDDylation sites. The approach is based on the use of cell lines stably expressing the NEDD8R74K mutant. Digestion of samples with Lysyl endopeptidase generates peptides with a di-glycine remnant only from proteins modified with NEDD8R74K but not with ubiquitin or ISG15. The isolation of these peptides with anti-di-glycine antibodies (K-ε-GG) allows the identification of NEDDylation sites by liquid chromatography tandem mass spectrometry (LC-MS/MS).


Assuntos
Fabaceae , Ubiquitina , Cromatografia Líquida , Espectrometria de Massas em Tandem , Proteoma , Glicina
7.
Semin Cell Dev Biol ; 132: 27-37, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35078718

RESUMO

Post-translational modification of proteins with the Ubiquitin-like molecule NEDD8 is a critical regulatory mechanism for several biological processes and a potential target for therapeutic intervention. The role of NEDD8 has been mainly characterised through its modification as single moiety on the cullin family of proteins and control of Cullin-Ring-Ligases, but also on non-cullin substrates. In addition to monoNEDDylation, recent studies have now revealed that NEDD8 can also generate diverse polymers. This is either through modification of the 9 available lysines in NEDD8 and the formation of polyNEDD8 chains, or NEDDylation of Ubiquitin and SUMO-2 for the generation of hybrid NEDD8 chains. Here, we review recent findings that characterise the formation of NEDD8 polymers under distinct modes of protein NEDDylation (canonical/atypical) and their potential role as regulatory signals of the proteotoxic stress response and the Protein Quality Control system.


Assuntos
Polímeros , Ubiquitinas , Ubiquitinas/metabolismo , Ubiquitina/metabolismo , Proteínas Culina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
8.
Biochem Soc Trans ; 49(3): 1075-1083, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34156462

RESUMO

Molecular chaperones are essential components of the protein quality control system and maintenance of homeostasis. Heat Shock Protein 70 (HSP70), a highly evolutionarily conserved family of chaperones is a key regulator of protein folding, oligomerisation and prevents the aggregation of misfolded proteins. HSP70 chaperone function depends on the so-called 'HSP70-cycle', where HSP70 interacts with and is released from substrates via ATP hydrolysis and the assistance of HSP70 co-factors/co-chaperones, which also provide substrate specificity. The identification of regulatory modules for HSP70 allows the elucidation of HSP70 specificity and target selectivity. Here, we discuss how the HSP70 cycle is functionally linked with the cycle of the Ubiquitin-like molecule NEDD8. Using as an example the DNA damage response, we present a model where HSP70 acts as a sensor of the NEDD8 cycle. The NEDD8 cycle acts as a regulatory module of HSP70 activity, where conversion of poly-NEDD8 chains into mono-NEDD8 upon DNA damage activates HSP70, facilitating the formation of the apoptosome and apoptosis execution.


Assuntos
Dano ao DNA , Reparo do DNA , Proteínas de Choque Térmico HSP70/metabolismo , Chaperonas Moleculares/metabolismo , Proteína NEDD8/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , DNA/genética , DNA/metabolismo , Humanos , Hidrólise
9.
Mol Metab ; 53: 101275, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34153521

RESUMO

OBJECTIVE: Neddylation is a druggable and reversible ubiquitin-like post-translational modification upregulated in many diseases, including liver fibrosis, hepatocellular carcinoma, and more recently, non-alcoholic fatty liver disease (NAFLD). Herein, we propose to address the effects of neddylation inhibition and the underlying mechanisms in pre-clinical models of NAFLD. METHODS: Hepatic neddylation measured by immunohistochemical analysis and NEDD8 serum levels measured by ELISA assay were evaluated in NAFLD clinical and pre-clinical samples. The effects of neddylation inhibition by using a pharmacological small inhibitor, MLN4924, or molecular approaches were assessed in isolated mouse hepatocytes and pre-clinical mouse models of diet-induced NAFLD, male adult C57BL/6 mice, and the AlfpCre transgenic mice infected with AAV-DIO-shNedd8. RESULTS: Neddylation inhibition reduced lipid accumulation in oleic acid-stimulated mouse primary hepatocytes and ameliorated liver steatosis, preventing lipid peroxidation and inflammation in the mouse models of diet-induced NAFLD. Under these conditions, increased Deptor levels and the concomitant repression of mTOR signaling were associated with augmented fatty acid oxidation and reduced lipid content. Moreover, Deptor silencing in isolated mouse hepatocytes abolished the anti-steatotic effects mediated by neddylation inhibition. Finally, serum NEDD8 levels correlated with hepatic neddylation during the disease progression in the clinical and pre-clinical models CONCLUSIONS: Overall, the upregulation of Deptor, driven by neddylation inhibition, is proposed as a novel effective target and therapeutic approach to tackle NAFLD.


Assuntos
Ácidos Graxos/metabolismo , Hepatócitos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Adolescente , Adulto , Idoso , Animais , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Transdução de Sinais , Adulto Jovem
10.
Cell Rep ; 34(3): 108635, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33472076

RESUMO

The ubiquitin-like molecule NEDD8 controls several biological processes and is a promising target for therapeutic intervention. NEDDylation occurs through specific NEDD8 enzymes (canonical) or enzymes of the ubiquitin system (atypical). Identification of NEDD8 sites on substrates is critical for delineating the processes controlled by NEDDylation. By combining the use of the NEDD8 R74K mutant with anti-di-glycine (anti-diGly) antibodies, we identified 1,101 unique NEDDylation sites in 620 proteins. Bioinformatics analysis reveals that canonical and atypical NEDDylation have distinct proteomes; the spliceosome/mRNA surveillance/DNA replication and ribosome/proteasome, respectively. The data also reveal the formation of poly-NEDD8, hybrid NEDD8-ubiquitin, and NEDD8-SUMO-2 chains as potential molecular signals. In particular, NEDD8-SUMO-2 chains are induced upon proteotoxic stress (atypical) through NEDDylation of K11 in SUMO-2, and conjugates accumulate in previously described nucleolus-related inclusions. The study uncovers a diverse proteome for NEDDylation and is consistent with the concept of extensive cross-talk between ubiquitin and Ubls under proteotoxic stress conditions.


Assuntos
Proteína NEDD8/metabolismo , Proteoma/metabolismo , Domínio Catalítico , Nucléolo Celular/metabolismo , Endopeptidases/metabolismo , Células HCT116 , Humanos , Proteína NEDD8/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo
11.
Mol Cell ; 79(1): 155-166.e9, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32454028

RESUMO

To understand gene function, the encoding DNA or mRNA transcript can be manipulated and the consequences observed. However, these approaches do not have a direct effect on the protein product of the gene, which is either permanently abrogated or depleted at a rate defined by the half-life of the protein. We therefore developed a single-component system that could induce the rapid degradation of the specific endogenous protein itself. A construct combining the RING domain of ubiquitin E3 ligase RNF4 with a protein-specific camelid nanobody mediates target destruction by the ubiquitin proteasome system, a process we describe as antibody RING-mediated destruction (ARMeD). The technique is highly specific because we observed no off-target protein destruction. Furthermore, bacterially produced nanobody-RING fusion proteins electroporated into cells induce degradation of target within minutes. With increasing availability of protein-specific nanobodies, this method will allow rapid and specific degradation of a wide range of endogenous proteins.


Assuntos
Endopeptidases/metabolismo , Proteína NEDD8/metabolismo , Proteínas Nucleares/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Anticorpos de Domínio Único/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina/metabolismo , Endopeptidases/imunologia , Células HeLa , Humanos , Proteína NEDD8/imunologia , Proteínas Nucleares/imunologia , Complexo de Endopeptidases do Proteassoma/imunologia , Proteólise , Anticorpos de Domínio Único/imunologia , Fatores de Transcrição/imunologia , Ubiquitinação
12.
Cell Rep ; 29(1): 212-224.e8, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31577950

RESUMO

Ubiquitin and ubiquitin-like chains are finely balanced by conjugating and de-conjugating enzymes. Alterations in this balance trigger the response to stress conditions and are often observed in pathologies. How such changes are detected is not well understood. We identify the HSP70 chaperone as a sensor of changes in the balance between mono- and poly-NEDDylation. Upon DNA damage, the induction of the de-NEDDylating enzyme NEDP1 restricts the formation of NEDD8 chains, mainly through lysines K11/K48. This promotes APAF1 oligomerization and apoptosis induction, a step that requires the HSP70 ATPase activity. HSP70 binds to NEDD8, and, in vitro, the conversion of NEDD8 chains into mono-NEDD8 stimulates HSP70 ATPase activity. This effect is independent of NEDD8 conjugation onto substrates. The study indicates that the NEDD8 cycle is a regulatory module of HSP70 function. These findings may be important in tumorigenesis, as we find decreased NEDP1 levels in hepatocellular carcinoma with concomitant accumulation of NEDD8 conjugates.


Assuntos
Adenosina Trifosfatases/genética , Dano ao DNA/genética , Endopeptidases/genética , Proteínas de Choque Térmico HSP70/genética , Proteína NEDD8/genética , Sequência de Aminoácidos , Animais , Carcinogênese/genética , Linhagem Celular Tumoral , Feminino , Humanos , Lisina/genética , Células MCF-7 , Camundongos , Ubiquitina/genética
13.
FASEB J ; 33(1): 643-651, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30024791

RESUMO

The ribosomal protein L11 (RPL11) integrates different types of stress into a p53-mediated response. Here, we analyzed the impact of the ubiquitin-like protein SUMO on the RPL11-mouse double-minute 2 homolog-p53 signaling. We show that small ubiquitin-related modifier (SUMO)1 and SUMO2 covalently modify RPL11. We find that SUMO negatively modulates the conjugation of the ubiquitin-like protein neural precursor cell-expressed developmentally downregulated 8 (NEDD8) to RPL11 and promotes the translocation of the RP outside of the nucleoli. Moreover, the SUMO-conjugating enzyme, Ubc9, is required for RPL11-mediated activation of p53. SUMOylation of RPL11 is triggered by ribosomal stress, as well as by alternate reading frame protein upregulation. Collectively, our data identify SUMO protein conjugation to RPL11 as a new regulator of the p53-mediated cellular response to different types of stress and reveal a previously unknown SUMO-NEDD8 interplay.-El Motiam, A., Vidal, S., de la Cruz-Herrera, C. F., Da Silva-Álvarez, S., Baz-Martínez, M., Seoane, R., Vidal, A., Rodríguez, M. S., Xirodimas, D. P., Carvalho, A. S., Beck, H. C., Matthiesen, R., Collado, M., Rivas, C. Interplay between SUMOylation and NEDDylation regulates RPL11 localization and function.


Assuntos
Proteína NEDD8/metabolismo , Neoplasias/patologia , Processamento de Proteína Pós-Traducional , Proteínas Ribossômicas/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Sumoilação , Ubiquitinas/metabolismo , Células HEK293 , Humanos , Neoplasias/metabolismo , Células Tumorais Cultivadas
14.
Nat Commun ; 9(1): 4376, 2018 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-30349034

RESUMO

Spatial management of stress-induced protein aggregation is an integral part of the proteostasis network. Protein modification by the ubiquitin-like molecule NEDD8 increases upon proteotoxic stress and it is characterised by the formation of hybrid NEDD8/ubiquitin conjugates. However, the biological significance of this response is unclear. Combination of quantitative proteomics with biological analysis shows that, during proteotoxic stress, NEDDylation promotes nuclear protein aggregation, including ribosomal proteins as a major group. This correlates with protection of the nuclear Ubiquitin Proteasome System from stress-induced dysfunction. Correspondingly, we show that NEDD8 compromises ubiquitination and prevents targeting and processing of substrates by the proteasome. Moreover, we identify HUWE1 as a key E3-ligase that is specifically required for NEDDylation during proteotoxic stress. The study reveals a specific role for NEDD8 in nuclear protein aggregation upon stress and is consistent with the concept that transient aggregate formation is part of a defence mechanism against proteotoxicity.


Assuntos
Proteína NEDD8/metabolismo , Proteínas Nucleares/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitinas/metabolismo , Western Blotting , Linhagem Celular Tumoral , Células HEK293 , Humanos , Microscopia de Fluorescência , Proteína NEDD8/genética , Proteínas Nucleares/genética , Proteômica , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/genética , Ubiquitinação/fisiologia , Ubiquitinas/genética
15.
Cell Rep ; 18(7): 1791-1803, 2017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28199849

RESUMO

How metazoan genomes are structured at the nanoscale in living cells and tissues remains unknown. Here, we adapted a quantitative FRET (Förster resonance energy transfer)-based fluorescence lifetime imaging microscopy (FLIM) approach to assay nanoscale chromatin compaction in living organisms. Caenorhabditis elegans was chosen as a model system. By measuring FRET between histone-tagged fluorescent proteins, we visualized distinct chromosomal regions and quantified the different levels of nanoscale compaction in meiotic cells. Using RNAi and repetitive extrachromosomal array approaches, we defined the heterochromatin state and showed that its architecture presents a nanoscale-compacted organization controlled by Heterochromatin Protein-1 (HP1) and SETDB1 H3-lysine-9 methyltransferase homologs in vivo. Next, we functionally explored condensin complexes. We found that condensin I and condensin II are essential for heterochromatin compaction and that condensin I additionally controls lowly compacted regions. Our data show that, in living animals, nanoscale chromatin compaction is controlled not only by histone modifiers and readers but also by condensin complexes.


Assuntos
Adenosina Trifosfatases/genética , Cromatina/metabolismo , Proteínas de Ligação a DNA/genética , Complexos Multiproteicos/genética , Animais , Caenorhabditis elegans/genética , Células Cultivadas , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/genética , Cromossomos/genética , Transferência Ressonante de Energia de Fluorescência/métodos , Heterocromatina/metabolismo , Histonas/genética , Microscopia de Fluorescência/métodos
16.
Sci Rep ; 6: 37775, 2016 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-27901050

RESUMO

Targetting the ubiquitin pathway is an attractive strategy for cancer therapy. The inhibitor of the ubiquitin-like molecule NEDD8 pathway, MLN4924 (Pevonedistat) is in Phase II clinical trials. Protection of healthy cells from the induced toxicity of the treatment while preserving anticancer efficacy is a highly anticipated outcome in chemotherapy. Cyclotherapy was proposed as a promising approach to achieve this goal. We found that cytostatic activation of p53 protects cells against MLN4924-induced toxicity and importantly the effects are reversible. In contrast, cells with mutant or no p53 remain sensitive to NEDD8 inhibition. Using zebrafish embryos, we show that MLN4924-induced apoptosis is reduced upon pre-treatment with actinomycin D in vivo. Our studies show that the cellular effects of NEDD8 inhibition can be manipulated based on the p53 status and that NEDD8 inhibitors can be used in a p53-based cyclotherapy protocol to specifically target cancer cells devoid of wild type p53 function, while healthy cells will be protected from the induced toxicity.


Assuntos
Ciclopentanos/farmacologia , Proteína NEDD8/antagonistas & inibidores , Pirimidinas/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Células HCT116 , Humanos , Ubiquitinas/metabolismo
17.
J Neurosci ; 35(10): 4113-30, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25762659

RESUMO

Ribosomal protein S6 (rpS6), a component of the 40S ribosomal subunit, is phosphorylated on several residues in response to numerous stimuli. Although commonly used as a marker for neuronal activity, its upstream mechanisms of regulation are poorly studied and its role in protein synthesis remains largely debated. Here, we demonstrate that the psychostimulant d-amphetamine (d-amph) markedly increases rpS6 phosphorylation at Ser235/236 sites in both crude and synaptoneurosomal preparations of the mouse striatum. This effect occurs selectively in D1R-expressing medium-sized spiny neurons (MSNs) and requires the cAMP/PKA/DARPP-32/PP-1 cascade, whereas it is independent of mTORC1/p70S6K, PKC, and ERK signaling. By developing a novel assay to label nascent peptidic chains, we show that the rpS6 phosphorylation induced in striatonigral MSNs by d-amph, as well as in striatopallidal MSNs by the antipsychotic haloperidol or in both subtypes by papaverine, is not correlated with the translation of global or 5' terminal oligopyrimidine tract mRNAs. Together, these results provide novel mechanistic insights into the in vivo regulation of the post-translational modification of rpS6 in the striatum and point out the lack of a relationship between PKA-dependent rpS6 phosphorylation and translation efficiency.


Assuntos
Corpo Estriado/citologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Vias Neurais/fisiologia , Neurônios/metabolismo , Proteína S6 Ribossômica/metabolismo , Substância Negra/citologia , Animais , Corpo Estriado/efeitos dos fármacos , Fosfoproteína 32 Regulada por cAMP e Dopamina/genética , Fosfoproteína 32 Regulada por cAMP e Dopamina/metabolismo , Feminino , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Harringtoninas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Vias Neurais/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/ultraestrutura , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Inibidores da Síntese de Proteínas/farmacologia , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/genética , Puromicina/farmacologia , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Substância Negra/efeitos dos fármacos , Sinaptossomos/efeitos dos fármacos , Sinaptossomos/metabolismo
18.
Oncotarget ; 6(4): 2509-23, 2015 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-25650664

RESUMO

The current view of cancer progression highlights that cancer cells must undergo through a post-translational regulation and metabolic reprogramming to progress in an unfriendly environment. In here, the importance of neddylation modification in liver cancer was investigated. We found that hepatic neddylation was specifically enriched in liver cancer patients with bad prognosis. In addition, the treatment with the neddylation inhibitor MLN4924 in Phb1-KO mice, an animal model of hepatocellular carcinoma showing elevated neddylation, reverted the malignant phenotype. Tumor cell death in vivo translating into liver tumor regression was associated with augmented phosphatidylcholine synthesis by the PEMT pathway, known as a liver-specific tumor suppressor, and restored mitochondrial function and TCA cycle flux. Otherwise, in protumoral hepatocytes, neddylation inhibition resulted in metabolic reprogramming rendering a decrease in oxidative phosphorylation and concomitant tumor cell apoptosis. Moreover, Akt and LKB1, hallmarks of proliferative metabolism, were altered in liver cancer being new targets of neddylation. Importantly, we show that neddylation-induced metabolic reprogramming and apoptosis were dependent on LKB1 and Akt stabilization. Overall, our results implicate neddylation/signaling/metabolism, partly mediated by LKB1 and Akt, in the development of liver cancer, paving the way for novel therapeutic approaches targeting neddylation in hepatocellular carcinoma.


Assuntos
Carcinoma Hepatocelular/metabolismo , Metabolismo Energético , Neoplasias Hepáticas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Animais , Western Blotting , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Ciclopentanos/farmacologia , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Nus , Proteína NEDD8 , Proibitinas , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Pirimidinas/farmacologia , Interferência de RNA , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transplante Heterólogo , Ubiquitinas/genética , Ubiquitinas/metabolismo
19.
Endocr Relat Cancer ; 22(1): T55-70, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25504797

RESUMO

Post-translational modification of proteins with ubiquitin and ubiquitin-like molecules (UBLs) controls a vast if not every biological process in the cell. It is not surprising that deregulation in ubiquitin and UBL signalling has been implicated in the pathogenesis of many diseases and that these pathways are considered as major targets for therapeutic intervention. In this review, we summarise recent advances in our understanding of the role of the UBL neural precursor cell expressed developmentally downregulated-8 (NEDD8) in cancer-related processes and potential strategies for the use of NEDD8 inhibitors as chemotherapeutics.


Assuntos
Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Enzimas Ativadoras de Ubiquitina/antagonistas & inibidores , Enzimas Ativadoras de Ubiquitina/metabolismo , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Humanos , Neoplasias/metabolismo , Processamento de Proteína Pós-Traducional , Ubiquitina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...