Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
Int J Biol Sci ; 20(8): 3126-3139, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38904011

RESUMO

Although many cohort studies have reported that long-term exposure to particulate matter (PM) causes lung cancer, the molecular mechanisms underlying the PM-induced increases in lung cancer progression remain unclear. We applied the lung cancer cell line A549 (Parental; A549.Par) to PM for an extended period to establish a mimic PM-exposed lung cancer cell line, A549.PM. Our results indicate that A549.PM exhibits higher cell growth and proliferation abilities compared to A549.Par cells in vitro and in vivo. The RNA sequencing analysis found amphiregulin (AREG) plays a critical role in PM-induced cell proliferation. We observed that PM increases AREG-dependent lung cancer proliferation through glutamine metabolism. In addition, the EGFR/PI3K/AKT/mTOR signaling pathway is involved in PM-induced solute carrier family A1 member 5 (SLC1A5) expression and glutamine metabolism. Our findings offer important insights into how lung cancer proliferation develops upon exposure to PM.


Assuntos
Anfirregulina , Proliferação de Células , Glutamina , Neoplasias Pulmonares , Material Particulado , Anfirregulina/metabolismo , Humanos , Glutamina/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Animais , Material Particulado/efeitos adversos , Células A549 , Transdução de Sinais , Camundongos , Linhagem Celular Tumoral , Serina-Treonina Quinases TOR/metabolismo , Sistema ASC de Transporte de Aminoácidos/metabolismo , Sistema ASC de Transporte de Aminoácidos/genética , Antígenos de Histocompatibilidade Menor
2.
Chem Sci ; 15(17): 6522-6529, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38699280

RESUMO

Site selective functionalization of inert remote C(sp3)-H bonds to increase molecular complexity offers vital potential for chemical synthesis and new drug development, thus it has been attracting ongoing research interest. In particular, typical ß-C(sp3)-H arylation methods using chelation-assisted metal catalysis or metal-catalyzed oxidative/photochemical in situ generated allyl C(sp3)-H bond processes have been well developed. However, radical-mediated direct ß-C(sp3)-H arylation of carbonyls remains elusive. Herein, we describe an iodoarene-directed photoredox ß-C(sp3)-H arylation of 1-(o-iodoaryl)alkan-1-ones with cyanoarenes via halogen atom transfer (XAT) and hydrogen atom transfer (HAT). The method involves diethylaminoethyl radical-mediated generation of an aryl radical intermediate via XAT, then directed 1,5-HAT to form the remote alkyl radical intermediate and radical-radical coupling with cyanoarenes, and is applicable to a broad scope of unactivated remote C(sp3)-H bonds like ß-C(sp3)-H bonds of o-iodoaryl-substituted alkanones and α-C(sp3)-H bonds of o-iodoarylamides. Experimental findings are supported by computational studies (DFT calculations), revealing that this method operates via a radical-relay stepwise mechanism involving multiple SET, XAT, 1,5-HAT and radical-radical coupling processes.

3.
Aging (Albany NY) ; 16(11): 9460-9469, 2024 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-38814172

RESUMO

Low back pain stands as a significant factor in disability, largely resulting from intervertebral disc degeneration (IVDD). High glucose (HG) levels have been implicated in the pathogenesis of IVDD. However, the detailed mechanism of HG in IVDD is largely unknown. Our clinical results revealed that fibrosis markers such as CTGF, Col1a1, ATF4, and EIF2 are highly expressed in advanced-stage IVDD patients. Stimulation of human annulus fibrosus cells (HAFCs) with HG, but not mannitol, promotes fibrosis protein production. Ingenuity Pathway Analysis in the GSE database found that the mTOR, PKCδ, and NF-κB pathways were significantly changed during IVDD. The mTOR, PKCδ, and NF-κB inhibitors or siRNAs all abolished HG-induced fibrosis protein production. In addition, treatment of HAFCs with HG enhances the activation of mTOR, PKCδ, and NF-κB pathways. Thus, HG facilitates fibrosis in IVDD through mTOR, PKCδ, and NF-κB pathways. These results underscore the critical role of HG as a fibrotic factor in the progression of IVDD.


Assuntos
Anel Fibroso , Fibrose , Glucose , NF-kappa B , Proteína Quinase C-delta , Transdução de Sinais , Serina-Treonina Quinases TOR , Humanos , Serina-Treonina Quinases TOR/metabolismo , Proteína Quinase C-delta/metabolismo , Fibrose/metabolismo , NF-kappa B/metabolismo , Glucose/metabolismo , Anel Fibroso/metabolismo , Anel Fibroso/patologia , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/patologia , Masculino , Feminino , Pessoa de Meia-Idade , Células Cultivadas , Adulto
4.
Int Immunopharmacol ; 132: 112016, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38593506

RESUMO

Osteoarthritis (OA) is a low-grade inflammatory joint illness in which monocytes migrate and infiltrate synovial tissue, differentiating into the pro-inflammatory M1 macrophage phenotype. IL-17 is a proinflammatory mediator principally generated by Th17 cells, which is elevated in OA patients; nevertheless, investigators have yet to elucidate the function of IL-17 in M1 polarization during OA development. Our analysis of clinical tissues and results from the open online dataset discovered that the level of M1 macrophage markers is elevated in human OA tissue samples than in normal tissue. High-throughput screening demonstrated that MCP-1 is a potential candidate factor after IL-17 treatment in OA synovial fibroblasts (OASFs). Immunohistochemistry data revealed that the level of MCP-1 is higher in humans and mice with OA than in normal tissues. IL-17 stimulation facilitates MCP-1-dependent macrophage polarization to the M1 phenotype. It also appears that IL-17 enhances MCP-1 synthesis in human OASFs, enhancing monocyte migration via the JAK and STAT3 signaling cascades. Our findings indicate the IL-17/MCP-1 axis as a novel strategy for the remedy of OA.


Assuntos
Movimento Celular , Quimiocina CCL2 , Interleucina-17 , Macrófagos , Monócitos , Osteoartrite , Animais , Humanos , Masculino , Camundongos , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Quimiocina CCL2/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/imunologia , Interleucina-17/metabolismo , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Monócitos/imunologia , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Osteoartrite/imunologia , Transdução de Sinais , Fator de Transcrição STAT3/metabolismo , Membrana Sinovial/imunologia , Membrana Sinovial/patologia
5.
J Virol ; 98(3): e0008824, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38386781

RESUMO

Type I and type II IFNs are important immune modulators in both innate and adaptive immunity. They transmit signaling by activating JAK-STAT pathways. Sirtuin 1 (SIRT1), a class III NAD+-dependent deacetylase, has multiple functions in a variety of physiological processes. Here, we characterized the novel functions of SIRT1 in the regulation of type I and type II IFN-induced signaling. Overexpression of SIRT1 inhibited type I and type II IFN-induced interferon-stimulated response element activation. In contrast, knockout of SIRT1 promoted type I and type II IFN-induced expression of ISGs and inhibited viral replication. Treatment with SIRT1 inhibitor EX527 had similar positive effects. SIRT1 physically associated with STAT1 or STAT3, and this interaction was enhanced by IFN stimulation or viral infection. By deacetylating STAT1 at K673 and STAT3 at K679/K685/K707/K709, SIRT1 downregulated the phosphorylation of STAT1 (Y701) and STAT3 (Y705). Sirt1+/- primary peritoneal macrophages and Sirt1+/- mice exhibited enhanced IFN-induced signaling and antiviral activity. Thus, SIRT1 is a novel negative regulator of type I and type II IFN-induced signaling through its deacetylase activity.IMPORTANCESIRT1 has been reported in the precise regulation of antiviral (RNA and DNA) immunity. However, its functions in type I and type II IFN-induced signaling are still unclear. In this study, we deciphered the important functions of SIRT1 in both type I and type II IFN-induced JAK-STAT signaling and explored the potential acting mechanisms. It is helpful for understanding the regulatory roles of SIRT1 at different levels of IFN signaling. It also consolidates the notion that SIRT1 is an important target for intervention in viral infection, inflammatory diseases, or even interferon-related therapies.


Assuntos
Interferon Tipo I , Sirtuína 1 , Viroses , Animais , Camundongos , Imunidade Inata , Interferon Tipo I/metabolismo , Interferon gama , Fosforilação , Transdução de Sinais , Sirtuína 1/genética , Sirtuína 1/metabolismo , Fator de Transcrição STAT1/metabolismo , Viroses/imunologia
6.
Aging (Albany NY) ; 16(2): 1829-1844, 2024 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-38261743

RESUMO

The concept of osteoarthritis (OA) as a low-grade inflammatory joint disorder has been widely accepted. Many inflammatory mediators are implicated in the pathogenesis of OA. Interleukin (IL)-18 is a pleiotropic cytokine with versatile cellular functions that are pathogenetically important in immune responses, as well as autoimmune, inflammatory, and infectious diseases. IL-17, a proinflammatory cytokine mainly secreted by Th17 cells, is upregulated in OA patients. However, the role of IL-17 in OA progression is unclear. The synovial tissues collected from healthy donors and OA patients were used to detect the expression level of IL-18 by IHC stain. The OA synovial fibroblasts (OASFs) were incubated with recombinant IL-17 and subjected to Western blot, qPCR, and ELISA to examine IL-18 expression level. The chemical inhibitors and siRNAs which targeted signal pathways were used to investigate signal pathways involved in IL-17-induced IL-18 expression. The microRNAs which participated IL-18 expression were surveyed with online databases miRWalk and miRDB, followed by validation with qPCR. This study revealed significantly higher levels of IL-18 expression in synovial tissue from OA patients compared with healthy controls, as well as increased IL-18 expression in OASFs from rats with severe OA. In vitro findings indicated that IL-17 dose-dependently promoted IL-18 production in OASFs. Molecular investigations revealed that the MEK/ERK/miR-4492 axis stimulated IL-18 production when OASFs were treated with IL-17. This study provides novel insights into the role of IL-17 in the pathogenesis of OA, which may help to inform OA treatment in the future.


Assuntos
MicroRNAs , Osteoartrite , Humanos , Ratos , Animais , Interleucina-17/metabolismo , Interleucina-18/metabolismo , Osteoartrite/metabolismo , Citocinas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Fibroblastos/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo
7.
J Food Sci Technol ; 61(2): 340-352, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38196720

RESUMO

In order to utilize salmon skin for high value, and investigate the structural identification and combination mechanism of iron (II)-chelating peptides systemically, Atlantic salmon (Salmo salar L.) skin, a by-product of Atlantic salmon processing, was treated by two-step enzymatic hydrolysis to obtain salmon skin active peptides (SSAP). Then they reacted with iron (II) to obtain iron (II)-chelating salmon skin active peptides (SSAP-Fe) with a high iron (II) chelating ability of 98.84%. The results of Fourier transform infrared spectroscopy (FTIR), circular dichroism (CD) spectroscopy, 8-anilino-1-naphthalenesulfonic acid ammonium salt hydrate (ANS) combined fluorescence measurement, isothermal titration calorimetry (ITC) and full wavelength ultraviolet (UV) scanning showed that the structural characteristics of SSAP changed before and after chelating iron (II). Reverse phase high performance liquid chromatography (RP-HPLC) and mass spectrometry were used to identify and quantify the peptides in SSAP-Fe. Four peptide sequences (STEGGG, GIIKYGDDFMH, PGQPGIGYDGPAGPPGPPGPPGAP and QNQRESWTTCRSQSSLPDG) were identified. The content of PGQPGIGYDGPAGPPGPPGPPGAP was the highest, at 25.17 µg/mg. The pharmacokinetic and pharmacodynamic properties of these four peptides were also investigated, and the results indicated that they have satisfactory predicted ADMET properties. Molecular docking technology was used to analyze the binding sites between iron (II) and SSAP, and it was found that PGQPGIGYDGPAGPPGPPGPPGAP had the lowest predicted binding energy with iron (II) and the most stable predicted binding energy with iron (II). This results showed that the stability of SSAP-Fe were closely related to the number of covalent bonds and the types of amino acids. This study revealed the structure and combination mechanism of SSAP-Fe, and indicated that SSAP-Fe prepared by chelation may be used as a Fe supplement that can be applied in functional foods or ingredients.

8.
Inorg Chem ; 62(46): 19043-19051, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37939347

RESUMO

Natural gas plays a crucial role in daily and industrial production, but the impurities contained in natural gas limit its further use. It is very important to develop adsorbents that can separate CH4 from multicomponent mixtures, but there are still many challenges and problems. Herein, a novel porous MOF {[Mn5(pbdia)2(CO3)(H2O)2] ↔ 5H2O ↔ 2DMF}n (pbdia = 2,2'-(5-carboxy-1,3-phenylene)bis(oxy) diterephthalic acid) was successfully synthesized based on a flexible pentacarboxylic acid ligand and a unique pentanuclear Mn5(COO)10CO3 cluster. The MOF reveals a 3D porous structure with 2D intersecting channels, which shows high C3H8, C2H6, and CO2 adsorption capacities and affinities over CH4. Moreover, the ideal adsorption solution theory selectivities of C3H8/CH4, C2H6/CH4, and CO2/CH4 can reach 263.0, 27.0, and 7.7, respectively, suggesting a potential for removing the low content of C3H8, C2H6, and CO2 from pipeline natural gas, which was further confirmed by breakthrough curves and GCMC simulations.

9.
Zhongguo Gu Shang ; 36(9): 866-72, 2023 Sep 25.
Artigo em Chinês | MEDLINE | ID: mdl-37735080

RESUMO

OBJECTIVE: To explore and verify the genes related to female peak bone mass(PBM) and osteoporosis (OP) based on bioinformatics. METHODS: Using GEO data, DNA microarray technology to conduct genome-wide analysis of adult female monocytes with high and low PBM. Cluster analysis, GO enrichment and KEGG analysis were used to analyze the differential genes, and the interaction network of differential genes was further analyzed. OP rat model was established and femur neck tissue staining was performed to further verify the expression of differential genes. RESULTS: A total of 283 genes were obtained by differential gene screening. Compared with the high PBM samples, 135 genes were up-regulated and 148 genes were down-regulated in the low PBM samples. A total of 7 pathways and 12 differential genes were enriched, and there were differences in the expression of several genes involved in mineral absorption and transport, cellular immunity and other aspects. Among them, voltage-gated Ca2+ channel 1.3(CaV1.3) encoded by CACNA1D gene was significantly enhanced in the femoral neck tissue of OP rat model. CONCLUSION: The above results suggest that the difference in the expression level of CaV1.3 gene may lead to the occurrence of OP in women with low PBM, which provides us with a potential target for the prevention and treatment of OP.


Assuntos
Osteoporose , Adulto , Feminino , Humanos , Animais , Ratos , Osteoporose/genética , Densidade Óssea , Biologia Computacional , Colo do Fêmur , Coloração e Rotulagem
10.
Clin Neurol Neurosurg ; 233: 107941, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37573679

RESUMO

STUDY DESIGN: A retrospective study. BACKGROUND: Conventional cage-plate construct (CCP) was widely used in anterior cervical discectomy and fusion (ACDF), but the rigid fixation limits the motion of fused segments. Self-locking stand-alone cage (SSC) was an alternative for ACDF procedures and showed several superiorities. However, the effect of hybrid fixation in 3-level ACDF remains unknown. OBJECTIVE: To assess the clinical and radiological outcomes of hybrid fixation with SSC and CCP against conventional CCP in 3-level ACDF. METHOD: A retrospective review of patients who underwent 3-level ACDF at Renji Hospital between January 2018 and December 2019 was performed. Eighty-three patients met the inclusion and exclusion criteria and were stratified into 2 groups based on the fixation methods. The clinical outcomes, functional outcomes, and radiological parameters were collected and analyzed. RESULTS: No significant difference was observed between the two groups in the mean age, sex, body mass index, hospital stay, and duration of follow-up. The postoperative C2-7 Cobb angle in the CCP group was significantly greater than that in the hybrid group. The rate of cervical proximal junctional kyphosis (CPJK) in the hybrid group was significantly lower than that in the CCP group. The CCP group suffered significantly higher rates of adjacent segment degeneration (ASD) than the hybrid group at 2 years postoperatively. Moreover, the incidence of postoperative dysphagia was lower in the hybrid group. No significant differences were observed in JOA and NDI scores between the two groups. CONCLUSION: The hybrid fixation achieved comparable clinical outcomes against CCP fixation, indicating that hybrid fixation is an alternative procedure in 3-level ACDF.

11.
Biochem Pharmacol ; 215: 115687, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37481139

RESUMO

Rheumatoid arthritis (RA) is a common autoimmune disease marked by immune cell activation and chronic inflammation in the synovium accompanied by osteoclast activation and local joint destruction. Increased levels of the adipokine nesfatin-1 in RA synovium are associated with proinflammatory cytokines. Our analysis of datasets from the Gene Expression Omnibus (GEO) database and synovial tissue samples from RA patients revealed that these had higher levels of nesfatin-1 and osteoclast markers compared with normal synovium. These findings were the same in tissue samples from mice with collagen-induced arthritis (CIA) and normal healthy controls. RNA sequencing analysis revealed that nesfatin-1 increased levels of bone morphogenetic protein-5 (BMP5) expression via JAK/STAT signaling in RA synovial fibroblasts. Finally, we found that nesfatin-1 short hairpin RNA reduced BMP5 and osteoclast formation in CIA mice. These findings provide new insights into the pathogenesis of RA.


Assuntos
Artrite Experimental , Artrite Reumatoide , Animais , Camundongos , Artrite Experimental/genética , Artrite Experimental/metabolismo , Artrite Reumatoide/metabolismo , Fibroblastos/metabolismo , Osteoclastos/metabolismo , Osteogênese , Membrana Sinovial/metabolismo
12.
Macromol Rapid Commun ; 44(24): e2300236, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37289980

RESUMO

In this study, the fabrication of 3D-printed polymer materials with controlled phase separation using polymerization induced microphase separation (PIMS) via photoinduced 3D printing is demonstrated. While many parameters affecting the nanostructuration in PIMS processes are extensively investigated, the influence of the chain transfer agent (CTA) end group, i.e., Z-group, of macromolecular chain transfer agent (macroCTA) remains unclear as previous research has exclusively employed trithiocarbonate as the CTA end group. Herein, the effect of macroCTAs containing four different Z-groups on the formation of nanostructure of 3D printed materials is explored. The results show that the different Z-groups lead to distinct network formation and phase separation behaviors between the resins, influencing both the 3D printing process and the resulting material properties. Specifically, less reactive macroCTAs toward acrylic radical addition, such as O-alkyl xanthate and N-alkyl-N-aryl dithiocarbamate, result in translucent and brittle materials with macrophase separation morphology. In contrast, more reactive macroCTAs such as S-alkyl trithiocarbonate and 4-chloro-3,5-dimethylpyrazo dithiocarbamate produce transparent and rigid materials with nano-scale morphology. Findings of this study provide a novel approach to manipulate the nanostructure and properties of 3D printed PIMS materials, which can have important implications for materials science and engineering.


Assuntos
Separação de Fases , Polímeros , Polímeros/química , Tionas , Impressão Tridimensional
13.
ACS Appl Mater Interfaces ; 15(19): 23538-23545, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37150971

RESUMO

The achievement of direct C2H4 separation from C2 hydrocarbons is very challenging in the petrochemical industry due to their similar molecular sizes, boiling points, and physicochemical properties. In this work, a nonpolar/inert ultramicroporous metal-organic framework (MOF), [Co3(µ3-OH)(tipa)(bpy)1.5]·3DMF·6H2O (1), with stand-alone one-dimensional square tubular channels was successfully constructed, its pore enriched with plenty of aromatic rings causing nonpolar/inert pore surfaces. The MOF shows preferential adsorption of C2H6 compared to C2H4 and C2H2 in the low-pressure region, which is further verified by adsorption heats and selectivities. The C2H4 separation potential in one step for binary C2H6/C2H4 (50/50 and 10/90) and ternary C2H4/C2H6/C2H2 (89/10/1) is also examined by transient breakthrough simulations. Moreover, grand canonical Monte Carlo simulations demonstrate that the unique reversed adsorption mechanism is due to the shortest and most number of C-H···π interactions between C2H6 and the framework.

14.
Small ; 19(38): e2302975, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37194973

RESUMO

Considering the significant application of acetylene (C2 H2 ) in the manufacturing and petrochemical industries, the selective capture of impurity carbon dioxide (CO2 ) is a crucial task and an enduring challenge. Here, a flexible metal-organic framework (Zn-DPNA) accompanied by a conformation change of the Me2 NH2 + ions in the framework is reported. The solvate-free framework provides a stepped adsorption isotherm and large hysteresis for C2 H2 , but type-I adsorption for CO2 . Owing to their uptakes difference before gate-opening pressure, Zn-DPNA demonstrated favorable inverse CO2 /C2 H2 separation. According to molecular simulation, the higher adsorption enthalpy of CO2 (43.1 kJ mol-1 ) is due to strong electrostatic interactions with Me2 NH2 + ions, which lock the hydrogen-bond network and narrow pores. Furthermore, the density contours and electrostatic potential verifies the middle of the cage in the large pore favors C2 H2 and repels CO2 , leading to the expansion of the narrow pore and further diffusion of C2 H2 . These results provide a new strategy that optimizes the desired dynamic behavior for one-step purification of C2 H2 .

15.
Microbiol Spectr ; 11(3): e0461122, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37154722

RESUMO

This study addresses the challenge of accurately identifying filamentous fungi in medical laboratories using transfer learning with convolutional neural networks (CNNs). The study uses microscopic images from touch-tape slides with lactophenol cotton blue staining, the most common method in clinical settings, to classify fungal genera and identify Aspergillus species. The training and test data sets included 4,108 images with representative microscopic morphology for each genus, and a soft attention mechanism was incorporated to enhance classification accuracy. As a result, the study achieved an overall classification accuracy of 94.9% for four frequently encountered genera and 84.5% for Aspergillus species. One of the distinct features is the involvement of medical technologists in developing a model that seamlessly integrates into routine workflows. In addition, the study highlights the potential of merging advanced technology with medical laboratory practices to diagnose filamentous fungi accurately and efficiently. IMPORTANCE This study utilizes transfer learning with CNNs to classify fungal genera and identify Aspergillus species using microscopic images from touch-tape preparation and lactophenol cotton blue staining. The training and test data sets included 4,108 images with representative microscopic morphology for each genus, and a soft attention mechanism was incorporated to enhance classification accuracy. As a result, the study achieved an overall classification accuracy of 94.9% for four frequently encountered genera and 84.5% for Aspergillus species. One of the distinct features is the involvement of medical technologists in developing a model that seamlessly integrates into routine workflows. In addition, the study highlights the potential of merging advanced technology with medical laboratory practices to diagnose filamentous fungi accurately and efficiently.


Assuntos
Fungos , Laboratórios Clínicos , Aspergillus , Aprendizado de Máquina
16.
Int Immunopharmacol ; 118: 110040, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37001379

RESUMO

The innate immune responses are tightly regulated to ensure effective clearance of invading pathogens and avoid excessive inflammation. Ubiquitination and deubiquitination are important post-translational modifications in antiviral immune responses. Here, we discovered deubiquitinase USP47 as a novel negative immune system regulator. Overexpression of USP47 repressed Sendai virus, poly(I:C) and poly(dA:dT)-induced ISRE and IFN-ß activation, along with reduced IFNB1 transcription and enhanced viral replication. Knockdown of USP47 expression had the opposite effects. Dual-luciferase and phosphorylation assays showed that USP47 targeted downstream of MAVS and upstream of TBK1. Additional co-immunoprecipitation assays suggested that USP47 interacted with TRAF3 and TRAF6. Importantly, USP47 removed K63-linked polyubiquitin chains from TRAF3 and TRAF6. Hence, we describe a novel modulator of the antiviral innate immune response, USP47, which removes K63-linked polyubiquitins from TRAF3 and TRAF6, leading to reduced type I IFN signaling.


Assuntos
Interferon Tipo I , Vírus , Fator 3 Associado a Receptor de TNF/genética , Fator 3 Associado a Receptor de TNF/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , Imunidade Inata , Interferon Tipo I/metabolismo , Antivirais , Ubiquitinação , Enzimas Desubiquitinantes/metabolismo
17.
Int J Biol Sci ; 19(1): 281-293, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36594093

RESUMO

Rheumatoid arthritis (RA) is a prototypic inflammatory disease, characterized by the infiltration of proinflammatory cytokines into the joint synovium and the migration of mononuclear cells into inflammatory sites. The adipokine nesfatin-1 is linked to inflammatory events in various diseases, although its role in RA pathology is uncertain. Analysis of the Gene Expression Omnibus GSE55235 dataset revealed high levels of expression of the adipokine nesfatin-1 in human RA synovial tissue. Similarly, our human synovial tissue samples exhibited increasing levels of nesfatin-1 expression and Ccl2 mRNA expression. Nesfatin-1-induced stimulation of CCL2 expression and monocyte migration involved the MEK/ERK, p38, and NF-κB signaling pathways. Notably, nesfatin-1-induced increases in CCL2 expression favored M1 macrophage polarization, which increased the expression of proinflammatory cytokines IL-1ß, IL-6, and TNF-α. Finally, nesfatin-1 shRNA ameliorated the severity of inflammatory disease and reduced levels of M1 macrophage expression in CIA mice. Our studies confirm that nesfatin-1 appears to be worth targeting in RA treatment.


Assuntos
Artrite Reumatoide , Monócitos , Humanos , Camundongos , Animais , Monócitos/metabolismo , Artrite Reumatoide/genética , Artrite Reumatoide/metabolismo , Citocinas/metabolismo , Macrófagos/metabolismo , Adipocinas/metabolismo , Quimiocina CCL2/metabolismo
18.
Clin Oral Investig ; 27(1): 305-312, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36214938

RESUMO

OBJECTIVE: Dysphagia is one of the major complications of oral cancer patients, and is disturbing thousands of patients worldwide. Our study aim to evaluate the clinical efficacy of prosthesis combined with swallowing training on palatal defect and dysphagia in post-operative oral cancer patients. MATERIALS AND METHODS: Sixteen oral cancer patients with palatal defect and dysphagia post-operation were treated with removable prosthesis and individualized swallowing function training. Swallowing function of patients before and after treatment was analyzed and compared by videofluoroscopic swallowing examination. The severity of depression and life quality were evaluated by Depression Scale (SDS) and Functional Assessment of Cancer Therapy-Head and Neck (FACT-H&N) scores, respectively. RESULTS: Oral transit time (OTT) significantly shortened after treatment (P < 0.01), and Penetration-Aspiration Scale (PAS) scores was significantly higher after treatment (P < 0.001). Different consistency bolus showed different risk of aspiration. Thickened liquids were related to lower PAS scores (P < 0.001). SDS standard score was significantly lower after treatment (P < 0.05). The total score of FACT-H&N after treatment was significantly higher (P < 0.05). No patients came back for regressed swallowing function during the follow-up period (17.06 ± 2.376 months). CONCLUSION: Removable prosthesis and swallowing training can significantly improve swallowing function, reduce depression degree, and improve quality of life (QOL). CLINICAL RELEVANCE: Removable prosthesis combined with swallowing training is a cheap and effective method to improve QOL in patients with palate defect and dysphagia after oral cancer.


Assuntos
Transtornos de Deglutição , Implantes Dentários , Neoplasias Bucais , Humanos , Transtornos de Deglutição/etiologia , Deglutição , Estudos Prospectivos , Qualidade de Vida , Neoplasias Bucais/complicações , Palato
19.
Chinese Journal of Epidemiology ; (12): 885-890, 2023.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-985608

RESUMO

Objective: To determine the causal association between long-term Nitrogen dioxide (NO2) exposure and the risk of cardiovascular hospitalization. Methods: Based on a sub-cohort of a community-based prospective cohort study, a total of 36 271 participants were recruited from 35 communities randomly selected in Guangzhou in 2015. The annual average exposure of NO2, demographic characteristics, lifestyle factors, and information on the causes of hospitalization was collected. We applied marginal structural Cox models to investigate the effect of NO2 on cardiovascular hospitalization. Demographic and behavioral factors also stratified results. Results: The mean age of participants in the present study was (50.9±17.8) years, and the cardiovascular admission rate was 8.7%, with 203 822 person-years of follow-up. The annual mean NO2 concentration was 48.7 μg/m3 during 2015-2020. For each 10 μg/m3 increase in NO2 concentrations, the HRs (95%CIs) of total cardiovascular hospitalization, cardiovascular hospitalization, and cerebrovascular hospitalization were 1.33 (1.16-1.52), 1.36 (1.16-1.60) and 1.25 (1.00-1.55), respectively. Participants who were never married/married, with secondary education, high exercise frequency, or non-smokers/current smokers may be more susceptible than their counterparts. Conclusion: Long-term exposure to NO2 significantly increased hospitalization risk for cardiovascular disease.


Assuntos
Humanos , Adulto , Pessoa de Meia-Idade , Idoso , Dióxido de Nitrogênio , Estudos Prospectivos , Doenças Cardiovasculares/epidemiologia , Causalidade , Hospitalização
20.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1009151

RESUMO

OBJECTIVE@#To explore and verify the genes related to female peak bone mass(PBM) and osteoporosis (OP) based on bioinformatics.@*METHODS@#Using GEO data, DNA microarray technology to conduct genome-wide analysis of adult female monocytes with high and low PBM. Cluster analysis, GO enrichment and KEGG analysis were used to analyze the differential genes, and the interaction network of differential genes was further analyzed. OP rat model was established and femur neck tissue staining was performed to further verify the expression of differential genes.@*RESULTS@#A total of 283 genes were obtained by differential gene screening. Compared with the high PBM samples, 135 genes were up-regulated and 148 genes were down-regulated in the low PBM samples. A total of 7 pathways and 12 differential genes were enriched, and there were differences in the expression of several genes involved in mineral absorption and transport, cellular immunity and other aspects. Among them, voltage-gated Ca2+ channel 1.3(CaV1.3) encoded by CACNA1D gene was significantly enhanced in the femoral neck tissue of OP rat model.@*CONCLUSION@#The above results suggest that the difference in the expression level of CaV1.3 gene may lead to the occurrence of OP in women with low PBM, which provides us with a potential target for the prevention and treatment of OP.


Assuntos
Adulto , Feminino , Humanos , Animais , Ratos , Osteoporose/genética , Densidade Óssea , Biologia Computacional , Colo do Fêmur , Coloração e Rotulagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...