Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Tipo de estudo
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-385849

RESUMO

Bat coronavirus (CoV) RaTG13 shares the highest genome sequence identity with SARS-CoV-2 among all known coronaviruses, and also uses human angiotensin converting enzyme 2 (hACE2) for virus entry. Thus, SARS-CoV-2 is thought to have originated from bat. However, whether SARS-CoV-2 emerged from bats directly or through an intermediate host remains elusive. Here, we found that Rhinolophus affinis bat ACE2 (RaACE2) is an entry receptor for both SARS-CoV-2 and RaTG13, although RaACE2 binding to the receptor binding domain (RBD) of SARS-CoV-2 is markedly weaker than that of hACE2. We further evaluated the receptor activities of ACE2s from additional 16 diverse animal species for RaTG13, SARS-CoV, and SARS-CoV-2 in terms of S protein binding, membrane fusion, and pseudovirus entry. We found that the RaTG13 spike (S) protein is significantly less fusogenic than SARS-CoV and SARS-CoV-2, and seven out of sixteen different ACE2s function as entry receptors for all three viruses, indicating that all three viruses might have broad host rages. Of note, RaTG13 S pseudovirions can use mouse, but not pangolin ACE2, for virus entry, whereas SARS-CoV-2 S pseudovirions can use pangolin, but limited for mouse, ACE2s enter cells. Mutagenesis analysis revealed that residues 484 and 498 in RaTG13 and SARS-CoV-2 S proteins play critical roles in recognition of mouse and human ACE2. Finally, two polymorphous Rhinolophous sinicus bat ACE2s showed different susceptibilities to virus entry by RaTG13 and SARS-CoV-2 S pseudovirions, suggesting possible coevolution. Our results offer better understanding of the mechanism of coronavirus entry, host range, and virus-host coevolution.

2.
Chinese Journal of Biotechnology ; (12): 1493-1499, 2010.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-351569

RESUMO

Delta8 desaturase pathway, different from common delta6 desaturase pathway, is an alternate pathway of polyunsaturated fatty acids biosynthesis. Delta8-fatty acid desaturase is one of the key enzymes in delta8 desaturase pathway. Two specific fragments were separately cloned from genomic DNA and cDNA of Euglena gracilis by PCR with the primers designed according to the reported sequence. Comparison of the genomic and cDNA sequences revealed that there wasn't intron in this delta8-fatty acid desaturase gene. This gene has an open reading frame of 1 266 bp that encodes 421 amino acids. It is 6 bp longer than the reported gene sequence, and also showed certain difference from the reported sequence in the N-terminal. The recombinant expression plasmid pYEFD by subcloning delta8-fatty acid desaturase gene into the yeast-E. coli shuttle vector pYES2.0 was constructed and was transformed into the defective mutant INVSc1 of Saccharomyces cerevisiae by electrotransformation. The resulting strain YD8 harboring plasmid pYEFD was selected and was cultured in the induction medium with exogenous substrates omega6-eicosadienoic acid and omega3-eicosatrienoic acid for the expression of delta8-fatty acid desaturase gene. The results indicated that high level expressed As-fatty acid desaturase could convert omega6-eicosadienoic acid and omega3-eicosatrienoic acid to dihomo-gamma-linolenic acid and eicosatetraenoic acid with substrate conversion ratio 31.2% and 46.3%, respectively.


Assuntos
Sequência de Aminoácidos , Clonagem Molecular , Euglena gracilis , Ácidos Graxos Dessaturases , Genética , Vetores Genéticos , Genética , Dados de Sequência Molecular , Proteínas Recombinantes , Genética , Saccharomyces cerevisiae , Genética , Metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...