Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37398256

RESUMO

Despite their immense success as a model of macaque visual cortex, deep convolutional neural networks (CNNs) have struggled to predict activity in visual cortex of the mouse, which is thought to be strongly dependent on the animal's behavioral state. Furthermore, most computational models focus on predicting neural responses to static images presented under head fixation, which are dramatically different from the dynamic, continuous visual stimuli that arise during movement in the real world. Consequently, it is still unknown how natural visual input and different behavioral variables may integrate over time to generate responses in primary visual cortex (V1). To address this, we introduce a multimodal recurrent neural network that integrates gaze-contingent visual input with behavioral and temporal dynamics to explain V1 activity in freely moving mice. We show that the model achieves state-of-the-art predictions of V1 activity during free exploration and demonstrate the importance of each component in an extensive ablation study. Analyzing our model using maximally activating stimuli and saliency maps, we reveal new insights into cortical function, including the prevalence of mixed selectivity for behavioral variables in mouse V1. In summary, our model offers a comprehensive deep-learning framework for exploring the computational principles underlying V1 neurons in freely-moving animals engaged in natural behavior.

2.
Front Neurosci ; 17: 1147729, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37274203

RESUMO

Introduction: Understanding the retina in health and disease is a key issue for neuroscience and neuroengineering applications such as retinal prostheses. During degeneration, the retinal network undergoes complex and multi-stage neuroanatomical alterations, which drastically impact the retinal ganglion cell (RGC) response and are of clinical importance. Here we present a biophysically detailed in silico model of the cone pathway in the retina that simulates the network-level response to both light and electrical stimulation. Methods: The model included 11, 138 cells belonging to nine different cell types (cone photoreceptors, horizontal cells, ON/OFF bipolar cells, ON/OFF amacrine cells, and ON/OFF ganglion cells) confined to a 300 × 300 × 210µm patch of the parafoveal retina. After verifying that the model reproduced seminal findings about the light response of retinal ganglion cells (RGCs), we systematically introduced anatomical and neurophysiological changes (e.g., reduced light sensitivity of photoreceptor, cell death, cell migration) to the network and studied their effect on network activity. Results: The model was not only able to reproduce common findings about RGC activity in the degenerated retina, such as hyperactivity and increased electrical thresholds, but also offers testable predictions about the underlying neuroanatomical mechanisms. Discussion: Overall, our findings demonstrate how biophysical changes typified by cone-mediated retinal degeneration may impact retinal responses to light and electrical stimulation. These insights may further our understanding of retinal processing and inform the design of retinal prostheses.

3.
bioRxiv ; 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36711897

RESUMO

Understanding the retina in health and disease is a key issue for neuroscience and neuroengineering applications such as retinal prostheses. During degeneration, the retinal network undergoes complex and multi-stage neuroanatomical alterations, which drastically impact the retinal ganglion cell (RGC) response and are of clinical importance. Here we present a biophysically detailed in silico model of retinal degeneration that simulates the network-level response to both light and electrical stimulation as a function of disease progression. The model is not only able to reproduce common findings about RGC activity in the degenerated retina, such as hyperactivity and increased electrical thresholds, but also offers testable predictions about the underlying neuroanatomical mechanisms. Overall, our findings demonstrate how biophysical changes associated with retinal degeneration affect retinal responses to both light and electrical stimulation, which may further our understanding of visual processing in the retina as well as inform the design and application of retinal prostheses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...