Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 12: 705892, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34975932

RESUMO

Most Alpinia species are valued as foods, ornamental plants, or plants with medicinal properties. However, morphological characteristics and commonly used DNA barcode fragments are not sufficient for accurately identifying Alpinia species. Difficulties in species identification have led to confusion in the sale and use of Alpinia for medicinal use. To mine resources and improve the molecular methods for distinguishing among Alpinia species, we report the complete chloroplast (CP) genomes of Alpinia galanga and Alpinia kwangsiensis species, obtained via high-throughput Illumina sequencing. The CP genomes of A. galanga and A. kwangsiensis exhibited a typical circular tetramerous structure, including a large single-copy region (87,565 and 87,732 bp, respectively), a small single-copy region (17,909 and 15,181 bp, respectively), and a pair of inverted repeats (27,313 and 29,705 bp, respectively). The guanine-cytosine content of the CP genomes is 36.26 and 36.15%, respectively. Furthermore, each CP genome contained 133 genes, including 87 protein-coding genes, 38 distinct tRNA genes, and 8 distinct rRNA genes. We identified 110 and 125 simple sequence repeats in the CP genomes of A. galanga and A. kwangsiensis, respectively. We then combined these data with publicly available CP genome data from four other Alpinia species (A. hainanensis, A. oxyphylla, A. pumila, and A. zerumbet) and analyzed their sequence characteristics. Nucleotide diversity was analyzed based on the alignment of the complete CP genome sequences, and five candidate highly variable site markers (trnS-trnG, trnC-petN, rpl32-trnL, psaC-ndhE, and ndhC-trnV) were found. Twenty-eight complete CP genome sequences belonging to Alpinieae species were used to construct phylogenetic trees. The results fully demonstrated the phylogenetic relationship among the genera of the Alpinieae, and further proved that Alpinia is a non-monophyletic group. The complete CP genomes of the two medicinal Alpinia species provides lays the foundation for the use of CP genomes in species identification and phylogenetic analyses of Alpinia species.

2.
Chin J Nat Med ; 18(8): 594-605, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32768166

RESUMO

To ensure the safety of medications, it is vital to accurately authenticate species of the Apocynaceae family, which is rich in poisonous medicinal plants. We identified Apocynaceae species by using nuclear internal transcribed spacer 2 (ITS2) and psbA-trnH based on experimental data. The identification ability of ITS2 and psbA-trnH was assessed using specific genetic divergence, BLAST1, and neighbor-joining trees. For DNA barcoding, ITS2 and psbA-trnH regions of 122 plant samples of 31 species from 19 genera in the Apocynaceae family were amplified. The PCR amplification for ITS2 and psbA-trnH sequences was 100%. The sequencing success rates for ITS2 and psbA-trnH sequences were 81% and 61%, respectively. Additional data involved 53 sequences of the ITS2 region and 38 sequences of the psbA-trnH region were downloaded from GenBank. Moreover, the analysis showed that the inter-specific divergence of Apocynaceae species was greater than its intra-specific variations. The results indicated that, using the BLAST1 method, ITS2 showed a high identification efficiency of 97% and 100% of the samples at the species and genus levels, respectively, via BLAST1, and psbA-trnH successfully identified 95% and 100% of the samples at the species and genus levels, respectively. The barcode combination of ITS2/psbA-trnH successfully identified 98% and 100% of samples at the species and genus levels, respectively. Subsequently, the neighbor joining tree method also showed that barcode ITS2 and psbA-trnH could distinguish among the species within the Apocynaceae family. ITS2 is a core barcode and psbA-trnH is a supplementary barcode for identifying species in the Apocynaceae family. These results will help to improve DNA barcoding reference databases for herbal drugs and other herbal raw materials.


Assuntos
Apocynaceae/classificação , Código de Barras de DNA Taxonômico , DNA de Plantas/genética , DNA Espaçador Ribossômico/genética , Plantas Medicinais/classificação , Apocynaceae/genética , China , Folhas de Planta , Plantas Medicinais/genética
3.
Zhong Yao Cai ; 36(12): 1940-2, 2013 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-25090676

RESUMO

OBJECTIVE: To provide an identification method for the roots of Saposhnikovia divaricata and its three counterfeits. METHODS: Macroscopic identification and microscopic identification of root transverse section and powder were carried out to distinguish these four species. RESULTS: For macroscopic characteristics, Saposhnikoviae Radix and its counterfeits can be distinguished by the head of the residual leaf and sections. As for microscopic identification, the feature was not obvious. But there were some differences to distinguish them,such as the number of cork layer, cambium was evident or not, the number of the xylem catheter,the presence or absence of large oil pipe and longitudinal cracks between the part from cortex to xylem. CONCLUSION: This is a simple and accurate method for distinguish Saposhnikoviae Radix and its counterfeits.


Assuntos
Apiaceae/anatomia & histologia , Apiaceae/classificação , Raízes de Plantas/anatomia & histologia , Apiaceae/citologia , Microscopia , Raízes de Plantas/citologia , Pós , Controle de Qualidade , Xilema/anatomia & histologia , Xilema/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...