Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EBioMedicine ; 99: 104912, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38096688

RESUMO

BACKGROUND: Abnormal liver function was frequently observed in nonalcoholic fatty liver disease (NAFLD) patients infected with SARS-CoV-2. Our aim was to explore the effect of SARS-CoV-2 inactivated vaccines on liver function abnormality among NAFLD patients with COVID-19. METHODS: The multi-center retrospective cohort included 517 NAFLD patients with COVID-19 from 1 April to 30 June 2022. Participants who received 2 doses of the vaccine (n = 274) were propensity score matched (PSM) with 243 unvaccinated controls. The primary outcome was liver function abnormality and the secondary outcome was viral shedding duration. Logistic and Cox regression models were used to calculate the odds ratio (OR) and hazard ratio (HR) for the outcomes. Sensitivity analysis was conducted to assess robustness. FINDINGS: PSM identified 171 pairs of vaccinated and unvaccinated patients. Liver function abnormality was less frequent in the vaccinated group (adjusted OR, 0.556 [95% CI (confidence interval), 0.356-0.869], p = 0.010). Additionally, the vaccinated group demonstrated a lower incidence of abnormal bilirubin levels (total bilirubin: adjusted OR, 0.223 [95% CI, 0.072-0.690], p = 0.009; direct bilirubin: adjusted OR, 0.175 [95% CI, 0.080-0.384], p < 0.001) and shorter viral shedding duration (adjusted HR, 0.798 [95% CI, 0.641-0.994], p = 0.044) than the unvaccinated group. Further subgroup analysis revealed similar results, while the sensitivity analyses indicated consistent findings. INTERPRETATION: SARS-CoV-2 vaccination in patients with NAFLD may reduce the risk of liver dysfunction during COVID-19. Furthermore, vaccination demonstrated beneficial effects on viral shedding in the NAFLD population. FUNDING: 23XD1422700, Tszb2023-01, Zdzk2020-10, Zdxk2020-01, 2308085J27 and JLY20180124.


Assuntos
COVID-19 , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/complicações , Vacinas contra COVID-19 , Estudos Retrospectivos , COVID-19/complicações , COVID-19/prevenção & controle , SARS-CoV-2 , Bilirrubina , Vacinas de Produtos Inativados , Vacinação
2.
Cancers (Basel) ; 15(7)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37046729

RESUMO

Circular RNAs (circRNAs) have been shown to play a crucial role in cancer occurrence and progression. This present work investigated the link between hsa_circ_0008234 and colon cancer. Data retrieved from GSE172229 was used to compare the circRNA profiles of colon cancer and surrounding non-tumorous tissues. The amount of RNA and protein in the molecules was determined using quantitative real-time PCR (qRT-PCR) and Western blot analysis, respectively. The cell proliferation ability was assessed using CCK8, EdU, colon formation, and nude mice tumorigenesis tests. Cell invasion and migration abilities were evaluated using transwell wound healing and mice lung metastasis model. Hsa_circ_0008234 piqued our interest because bioinformatics and qRT-PCR analyses revealed that it is upregulated in colon cancer tissue. Cell phenotypic studies suggest that hsa_circ_0008234 may significantly increase colon cancer cell aggressiveness. Mice experiments revealed that inhibiting hsa_circ_0008234 significantly reduced tumor growth and metastasis. Moreover, the fluorescence in situ hybridization experiment demonstrated that hsa_circ_0008234 is primarily found in the cytoplasm, implying that it potentially functions via a competitive endogenous RNA pathway. These findings indicated that hsa_circ_0008234 may act as a "molecular sponge" for miR-338-3p, increasing the expression of miR-338-target 3p's ETS1. In addition, the traditional oncogenic pathway PI3K/AKT/mTOR signaling was found to be the potential downstream pathway of the hsa_circ_0008234/miR-338-3p/ETS1 axis. In conclusion, hsa_circ_0008234 increases colon cancer proliferation, infiltration, and migration via the miR-338-3p/ETS1/PI3K/AKT axis; therefore, it could serve as a target and a focus for colon cancer therapy.

3.
Sci Total Environ ; 738: 139747, 2020 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-32531592

RESUMO

The wastes network system exploration in metallurgical process imposes of great significance for advancing green circular economy in steel plant. This paper originally proposes a closed-circulating CO2 sequestering process for wastes appreciation and harmless disposal, and the effect of two circulation strategy, i.e. Slag circulation strategy and cold-rolling waste water(CRW) circulation strategy, on the CO2 uptake efficiency, carbonation degree and desalination rate were systemically discussed. Then, their kinetics are analyzed by model and molecular simulation in detail, respectively. In addition, the energy consumption and the cost are simulated for comprehensively evaluating its superiority. The experimental and molecular simulation results all show that the peak values for both strategies could be achieved when circulation times is in the range of three to five. CRW circulation strategy has a better CO2 uptake efficiency than slag circulation strategy, the CO2 uptake efficiency is about 487kgCO2/tslag and corresponding desalination rate is 48.9%, when CRW is circulated for five times at 60 °C and 20 L/g for 90 min. Adopting CRW circulation strategy, the CO2 sequestration efficiency is averagely doubled comparing to previous results. 129%-183% energy consumption and 35.6% cost would be reduced, which represents that the proposed routine is economical to step forward to industrial application.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...