Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pest Manag Sci ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38946320

RESUMO

BACKGROUND: The Red Imported Fire Ant (RIFA), scientifically known as Solenopsis invicta, is a destructive invasive species causing considerable harm to ecosystems and generating substantial economic costs globally. Traditional methods for RIFA nests detection are labor-intensive and may not be scalable to larger field areas. This study aimed to develop an innovative surveillance system that leverages artificial intelligence (AI) and robotic dogs to automate the detection and geolocation of RIFA nests, thereby improving monitoring and control strategies. RESULTS: The designed surveillance system, through integrating the CyberDog robotic platform with a YOLOX AI model, demonstrated RIFA nest detection precision rates of >90%. The YOLOX model was trained on a dataset containing 1118 images and achieved a final precision rate of 0.95, with an inference time of 20.16 ms per image, indicating real-time operational suitability. Field tests revealed that the CyberDog system identified three times more nests than trained human inspectors, with significantly lower rates of missed detections and false positives. CONCLUSION: The findings underscore the potential of AI-driven robotic systems in advancing pest management. The CyberDog/YOLOX system not only matched human inspectors in speed, but also exceeded them in accuracy and efficiency. This study's results are significant as they highlight how technology can be harnessed to address biological invasions, offering a more effective, ecologically friendly, and scalable solution for RIFA detection. The successful implementation of this system could pave the way for broader applications in environmental monitoring and pest control, ultimately contributing to the preservation of biodiversity and economic stability. © 2024 Society of Chemical Industry.

2.
Neuroimage ; 231: 117818, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33548458

RESUMO

We have previously shown that INS-fMRI is a rapid method for mapping mesoscale brain networks in the macaque monkey brain. Focal stimulation of single cortical sites led to the activation of connected cortical locations, resulting in a global connectivity map. Here, we have extended this method for mapping brainwide networks following stimulation of single subcortical sites. As a testbed, we focused on the basal nucleus of the amygdala in the macaque monkey. We describe methods to target basal nucleus locations with submillimeter precision, pulse train stimulation methods, and statistical tests for assessing non-random nature of activations. Using these methods, we report that stimulation of precisely targeted loci in the basal nucleus produced sparse and specific activations in the brain. Activations were observed in the insular and sensory association cortices as well as activations in the cingulate cortex, consistent with known anatomical connections. What is new here is that the activations were focal and, in some cases, exhibited shifting topography with millimeter shifts in stimulation site. The precision of the method enables networks mapped from different nearby sites in the basal nucleus to be distinguished. While further investigation is needed to improve the sensitivity of this method, our analyses do support the reproducibility and non-random nature of some of the activations. We suggest that INS-fMRI is a promising method for mapping large-scale cortical and subcortical networks at high spatial resolution.


Assuntos
Complexo Nuclear Basolateral da Amígdala/diagnóstico por imagem , Mapeamento Encefálico/métodos , Córtex Cerebral/diagnóstico por imagem , Raios Infravermelhos , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/diagnóstico por imagem , Animais , Complexo Nuclear Basolateral da Amígdala/fisiologia , Córtex Cerebral/fisiologia , Macaca , Rede Nervosa/fisiologia , Primatas
3.
Sci Adv ; 5(4): eaau7046, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31032400

RESUMO

We have developed a way to map brain-wide networks using focal pulsed infrared neural stimulation in ultrahigh-field magnetic resonance imaging (MRI). The patterns of connections revealed are similar to those of connections previously mapped with anatomical tract tracing methods. These include connections between cortex and subcortical locations and long-range cortico-cortical connections. Studies of local cortical connections reveal columnar-sized laminar activation, consistent with feed-forward and feedback projection signatures. This method is broadly applicable and can be applied to multiple areas of the brain in different species and across different MRI platforms. Systematic point-by-point application of this method may lead to fundamental advances in our understanding of brain connectomes.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Conectoma , Raios Infravermelhos , Imageamento por Ressonância Magnética , Vias Neurais , Neurônios/fisiologia , Algoritmos , Animais , Mapeamento Encefálico , Gatos , Eletrofisiologia , Processamento de Imagem Assistida por Computador/métodos , Saimiri , Córtex Visual/diagnóstico por imagem
4.
PLoS One ; 7(8): e43915, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22937124

RESUMO

BACKGROUND: Humans have a widely different diet from other primate species, and are dependent on its high nutritional content. The molecular mechanisms responsible for adaptation to the human diet are currently unknown. Here, we addressed this question by investigating whether the gene expression response observed in mice fed human and chimpanzee diets involves the same regulatory mechanisms as expression differences between humans and chimpanzees. RESULTS: Using mouse and primate transcriptomic data, we identified the transcription factor EGR1 (early growth response 1) as a putative regulator of diet-related differential gene expression between human and chimpanzee livers. Specifically, we predict that EGR1 regulates the response to the high caloric content of human diets. However, we also show that close to 90% of the dietary response to the primate diet found in mice, is not observed in primates. This might be explained by changes in tissue-specific gene expression between taxa. CONCLUSION: Our results suggest that the gene expression response to the nutritionally rich human diet is partially mediated by the transcription factor EGR1. While this EGR1-driven response is conserved between mice and primates, the bulk of the mouse response to human and chimpanzee dietary differences is not observed in primates. This result highlights the rapid evolution of diet-related expression regulation and underscores potential limitations of mouse models in dietary studies.


Assuntos
Dieta , Proteína 1 de Resposta de Crescimento Precoce/genética , Expressão Gênica , Fígado/metabolismo , Animais , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Humanos , Camundongos , Pan troglodytes , Transcrição Gênica , Transcriptoma
5.
BMC Bioinformatics ; 12: 347, 2011 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-21851598

RESUMO

BACKGROUND: Comparing biological time series data across different conditions, or different specimens, is a common but still challenging task. Algorithms aligning two time series represent a valuable tool for such comparisons. While many powerful computation tools for time series alignment have been developed, they do not provide significance estimates for time shift measurements. RESULTS: Here, we present an extended version of the original DTW algorithm that allows us to determine the significance of time shift estimates in time series alignments, the DTW-Significance (DTW-S) algorithm. The DTW-S combines important properties of the original algorithm and other published time series alignment tools: DTW-S calculates the optimal alignment for each time point of each gene, it uses interpolated time points for time shift estimation, and it does not require alignment of the time-series end points. As a new feature, we implement a simulation procedure based on parameters estimated from real time series data, on a series-by-series basis, allowing us to determine the false positive rate (FPR) and the significance of the estimated time shift values. We assess the performance of our method using simulation data and real expression time series from two published primate brain expression datasets. Our results show that this method can provide accurate and robust time shift estimates for each time point on a gene-by-gene basis. Using these estimates, we are able to uncover novel features of the biological processes underlying human brain development and maturation. CONCLUSIONS: The DTW-S provides a convenient tool for calculating accurate and robust time shift estimates at each time point for each gene, based on time series data. The estimates can be used to uncover novel biological features of the system being studied. The DTW-S is freely available as an R package TimeShift at http://www.picb.ac.cn/Comparative/data.html.


Assuntos
Algoritmos , Simulação por Computador , Perfilação da Expressão Gênica , Córtex Pré-Frontal/crescimento & desenvolvimento , Córtex Pré-Frontal/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Cerebelo/crescimento & desenvolvimento , Cerebelo/metabolismo , Criança , Pré-Escolar , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Lactente , Macaca mulatta/genética , Macaca mulatta/metabolismo , Pessoa de Meia-Idade , Pan troglodytes/embriologia , Pan troglodytes/metabolismo , Primatas , Tempo , Adulto Jovem
6.
PLoS Comput Biol ; 6: e1000843, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20617162

RESUMO

Transcription is the first step connecting genetic information with an organism's phenotype. While expression of annotated genes in the human brain has been characterized extensively, our knowledge about the scope and the conservation of transcripts located outside of the known genes' boundaries is limited. Here, we use high-throughput transcriptome sequencing (RNA-Seq) to characterize the total non-ribosomal transcriptome of human, chimpanzee, and rhesus macaque brain. In all species, only 20-28% of non-ribosomal transcripts correspond to annotated exons and 20-23% to introns. By contrast, transcripts originating within intronic and intergenic repetitive sequences constitute 40-48% of the total brain transcriptome. Notably, some repeat families show elevated transcription. In non-repetitive intergenic regions, we identify and characterize 1,093 distinct regions highly expressed in the human brain. These regions are conserved at the RNA expression level across primates studied and at the DNA sequence level across mammals. A large proportion of these transcripts (20%) represents 3'UTR extensions of known genes and may play roles in alternative microRNA-directed regulation. Finally, we show that while transcriptome divergence between species increases with evolutionary time, intergenic transcripts show more expression differences among species and exons show less. Our results show that many yet uncharacterized evolutionary conserved transcripts exist in the human brain. Some of these transcripts may play roles in transcriptional regulation and contribute to evolution of human-specific phenotypic traits.


Assuntos
Cerebelo/química , DNA Intergênico/genética , Perfilação da Expressão Gênica , Macaca/genética , Pan troglodytes/genética , Sequências Repetitivas de Ácido Nucleico/genética , Animais , Mapeamento Cromossômico , Análise por Conglomerados , Humanos , Masculino , Camundongos , Modelos Genéticos , Fenótipo , Alinhamento de Sequência , Análise de Sequência de RNA , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...