Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 205: 108135, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37979572

RESUMO

Cadmium (Cd) is detrimental to both plants and humans. Maize (Zea mays L.) genotypes exhibit variations in Cd accumulations. This study examined variations in Cd accumulation and tolerance among four maize genotypes with contrasting root morphology. The four maize genotypes were cultivated in a semi-hydroponic system with three Cd concentrations (0, 10, 20 µmol L-1). The effects of Cd on plant growth and physiology were assessed 39 days after transplanting. Results showed that root characteristics were positively correlated with root Cd accumulation and the bioconcentration factor under Cd20 treatment. Genotypes Shengrui999 and Zhengdan958 exhibited higher total Cd content than Xundan29 and Zhongke11 under Cd20 conditions. Cd toxicity led to membrane degradation of chloroplast mesophyll cells, loosening and swelling of grana lamella, and reduced starch reserves. The greater tolerance of Shengrui999 and Zhengdan958 was contributed to factors such as root biomass, shallower root depth, higher Cd content, accumulation of osmolyte such as soluble protein, antioxidant activities such as catalase (CAT), and the presence of phytohormone gibberellic acid. The study establishes a link between root morphology, Cd accumulation, and tolerance in maize plants, as demonstrated by the higher Cd accumulation and shallower root system in Cd-tolerant genotypes. This research provides a foundation for breeding maize cultivars better suited for adaptation to moderate Cd-contaminated environments.


Assuntos
Cádmio , Poluentes do Solo , Humanos , Cádmio/metabolismo , Zea mays , Melhoramento Vegetal , Fenômenos Fisiológicos Vegetais , Cloroplastos/metabolismo , Raízes de Plantas , Poluentes do Solo/metabolismo
2.
BMC Plant Biol ; 23(1): 449, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37743492

RESUMO

BACKGROUND: The growth of alfalfa (Medicago sativa L.) is significantly hampered by drought and nutrient deficiencies. The identification of root architectural and anatomical characteristics holds paramount importance for the development of alfalfa genotypes with enhanced adaptation to adverse environmental conditions. In this study, we employed a visual rhizobox system to investigate the variability in root system architecture (including root depth, root length, root tips number, etc.), anatomical features (such as cortical traits, total stele area, number and area of vessel, etc.), as well as nitrogen and phosphorus uptake across 53 alfalfa genotypes during the seedling stage. RESULTS: Out of the 42 traits measured, 21 root traits, along with nitrogen (N) and phosphorus (P) uptake, displayed higher coefficients of variation (CVs ≥ 0.25) among the tested genotypes. Local root morphological and anatomical traits exhibited more significant variation than global root traits. Twenty-three traits with CVs ≥ 0.25 constituted to six principal components (eigenvalues > 1), collectively accounting for 88.0% of the overall genotypic variation. Traits such as total root length, number of root tips, maximal root depth, and others exhibited positive correlations with shoot dry mass and root dry mass. Additionally, total stele area and xylem vessel area showed positive correlations with N and P uptake. CONCLUSIONS: These root traits, which have demonstrated associations with biomass and nutrient uptake, may be considered for the breeding of alfalfa genotypes that possess efficient resource absorption and increased adaptability to abiotic stress, following validation during the entire growth period in the field.


Assuntos
Medicago sativa , Plântula , Medicago sativa/genética , Plântula/genética , Melhoramento Vegetal , Nitrogênio , Fósforo
3.
Front Plant Sci ; 14: 1145709, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37649999

RESUMO

Fertilization could influence ecosystem structure and functioning through species turnover (ST) and intraspecific trait variation (ITV), especially in nutrient limited ecosystems. To quantify the relative importance of ITV and ST in driving community functional structure and productivity changes under nitrogen (N) and phosphorous (P) addition in semiarid grasslands. In this regard, we conducted a four-year fertilizer addition experiment in a semiarid grassland on the Loess Plateau, China. We examined how fertilization affects species-level leaf and root trait plasticity to evaluate the ability of plants to manifest different levels of traits in response to different N and P addition. Also, we assessed how ITV or ST dominated community-weighted mean (CWM) traits and functional diversity variations and evaluated their effects on grassland productivity. The results showed that the patterns of plasticity varied greatly among different plant species, and leaf and root traits showed coordinated variations following fertilization. Increasing the level of N and P increased CWM_specific leaf area (CWM_SLA), CWM_leaf N concentration (CWM_LN) and CWM_maximum plant height (CWM_Hmax) and ITV predominate these CWM traits variations. As a results, increased CWM_Hmax, CWM_LN and CWM_SLA positively influenced grassland productivity. In contrast, functional divergence decreased with increasing N and P and showed negative relationships with grassland productivity. Our results emphasized that CWM traits and functional diversity contrastingly drive changes in grassland productivity under N and P addition.

4.
Plants (Basel) ; 12(12)2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37375870

RESUMO

As one of the most important ecosystems on the planet, grasslands serve a variety of purposes in ecology, economy, culture and entertainment [...].

5.
Environ Sci Pollut Res Int ; 30(22): 61913-61926, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36933129

RESUMO

Unbalanced N and P input has substantially altered the relative importance of N and P limitation in grassland ecosystems, which resulted in profound impacts on species nutrient cycling, community structure, and ecosystem stability. However, the underlying species-specific nutrient use strategy and stoichiometric homeostasis in driving community structure and stability changes remain unclear. A split-plot N and P addition experiment (main-plot: 0, 25, 50, and 100 kgN hm-2 a-1; subplot: 0, 20, 40, and 80 kgP2O5 hm-2 a-1) was conducted during 2017-2019 in two typical grasslands (perennial grass and perennial forb) communities in the Loess Plateau. The stoichiometric homeostasis of 10 main component species, species dominance, stability changes, and their contribution to community stability were investigated. Perennial legume and perennial clonal species tend to perform higher stoichiometric homeostasis than non-clonal and annual forb. Large shifts in species with high homeostasis vs. low homeostasis caused by N and P addition showed consistently profound impacts on community homeostasis and stability in both communities. In both two communities, species dominance performed significantly positive relationships with homeostasis under no N and P addition. P alone or combined with 25 kgN hm-2 a-1 addition strengthened species dominance-homeostasis relationship and increased community homeostasis due to increased perennial legumes. Under 50 and 100 kgN hm-2 a-1 combined with P addition, species dominance-homeostasis relationships were weakened, and community homeostasis decreased significantly in both communities, which was due to that increased annual and non-clonal forb suppressed perennial legume and clonal species. Our results demonstrated that trait-based classifications of species-level homeostasis offer a reliable tool in predicting species performance and community stability under N and P addition, and conserving species with high homeostasis is important to enhance semiarid grassland ecosystem function stability on the Loess Plateau.


Assuntos
Ecossistema , Fabaceae , Pradaria , Especificidade da Espécie , Poaceae , Verduras , Homeostase , Nitrogênio , Solo
6.
J Sci Food Agric ; 103(5): 2618-2630, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36321249

RESUMO

BACKGROUND: Cadmium (Cd) contamination in farmland is a serious environmental and safety issue affecting plant growth, crop productivity, and human health. This study aimed to investigate genotypic variation in root morphology and Cd accumulations under moderate Cd stress among diverse maize genotypes. Twenty maize genotypes with contrasting root systems were assessed for Cd tolerance 39 days after transplanting (V6, six-leaf stage) under 20 µmol L-1 CdCl2 using a semi-hydroponic phenotyping platform in a glasshouse. RESULTS: Cadmium stress significantly inhibited plant growth across all genotypes. Genotypic variation in response to Cd toxicity was apparent: shoot dry weight varied from 0.13 (genotype NS2020) to 0.35 g plant-1 (Dongke301) with deductions up to 63% compared with non-Cd treatment (CK). Root dry weight of 20 genotypes ranged from 0.06 (NS2020) to 0.18 g plant-1 (Dongke301) with a deduction up to 56%. Root length ranged from 2.21 (NS590b) to 9.22 m (Dongke301) with a maximal decline of 76%. Cadmium-treated genotypes generally had thicker roots and average diameter increased by 34% compared with CK. Genotypes had up to 3.25 and 3.50 times differences in shoot and root Cd concentrations, respectively. Principal component and cluster analyses assigned the 20 genotypes into Cd-tolerant (five genotypes) and Cd-sensitive (15 genotypes) groups. CONCLUSIONS: Maize genotypes varied significantly in response to moderate Cd stress. Cadmium-tolerant genotypes optimized root morphology and Cd accumulation and distribution. This study could assist in the selection and breeding of new cultivars with improved adaptation to Cd-contaminated soil for food and feed or land remediation purposes. © 2022 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Cádmio , Poluentes do Solo , Humanos , Cádmio/análise , Zea mays , Melhoramento Vegetal , Adaptação Fisiológica , Genótipo , Raízes de Plantas/química , Poluentes do Solo/análise
7.
Plants (Basel) ; 11(22)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36432833

RESUMO

Soil available phosphorus (P) is one of the main factors limiting plant growth and yield. This study aimed to determine the role of arbuscular mycorrhizal fungi (AMF) in P-use efficiency in two maize genotypes with contrasting root systems in response to low P stress. Maize genotypes small-rooted Shengrui 999 and large-rooted Zhongke 11 were grown in rhizoboxes that were inoculated with or without AMF (Funneliformis mosseae) under low P (no added P) or optimal P (200 mg kg-1) for 53 days. Low P stress significantly inhibited shoot and root growth, photosynthesis, tissue P content, and root P concentration in both genotypes. Shengrui 999 was more tolerant to P stress with less reduction of these traits compared to Zhongke 11. Shengrui 999 had a higher AMF infection rate than Zhongke 11 at both P levels. Under P deficit, inoculation with AMF significantly promoted plant growth and P uptake in both genotypes with more profound effects seen in Zhongke 11, whilst Shengrui 999 was more dependent on AMF under optimal P. Low P stress inhibited the growth and physiological attributes of both genotypes. The small-rooted Shengrui 999 was more tolerant to low P than Zhongke 11. Inoculation with AMF alleviates low P stress in both genotypes with a more profound effect on Zhongke 11 at low P and on Shengrui 999 at high P conditions.

8.
Plants (Basel) ; 11(21)2022 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-36365374

RESUMO

Leaf photosynthetic and functional traits of dominant species are important for understanding grassland community dynamics under imbalanced nitrogen (N) and phosphorus (P) inputs. Here, the effects of N (N0, N50, and N100, corresponding to 0, 50, and 100 kg ha-1 yr-1, respectively) or/and P additions (P0, P40, and P80, corresponding to 0, 40, and 80 kg ha-1 yr-1) on photosynthetic characteristics and leaf economic traits of three dominant species (two grasses: Bothriochloa ischaemum and Stipa bungeana; a leguminous subshrub: Lespedeza davurica) were investigated in a semiarid grassland community on the Loess Plateau of China. Results showed that, after a three-year N addition, all three species had higher specific leaf area (SLA), leaf chlorophyll content (SPAD value), maximum net photosynthetic rate (PNmax), and leaf instantaneous water use efficiency (WUE), while also having a lower leaf dry matter content (LDMC). The two grasses, B. ischaemum and S. bungeana, showed greater increases in PNmax and SLA than the subshrub L. davurica. P addition alone had no noticeable effect on the PNmax of the two grasses while it significantly increased the PNmax of L. davurica. There was an evident synergetic effect of the addition of N and P combined on photosynthetic traits and most leaf economic traits in the three species. All species had relatively high PNmax and SLA under the addition of N50 combined with P40. Overall, this study suggests that N and P addition shifted leaf economic traits towards a greater light harvesting ability and, thus, elevated photosynthesis in the three dominant species of a semiarid grassland community, and this was achieved by species-specific responses in leaf functional traits. These results may provide insights into grassland restoration and the assessment of community development in the context of atmospheric N deposition and intensive agricultural fertilization.

9.
Plants (Basel) ; 11(15)2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35956523

RESUMO

Grassland is the dominant vegetation type in the Loess Plateau, and grassland productivity and processes are limited by nitrogen (N) and phosphorus (P). Studies have shown that productivity would change following fertilization in the grassland. The response of productivity to fertilization mainly depends on the dominant species traits. Trait-based methods provide a useful tool for explaining the variations in grassland productivity following fertilization. However, the relative contribution of plant functional traits to grassland productivity under N and P addition in the Loess Plateau is not clear. We measured aboveground biomass (AGB) and leaf N content (LN), leaf P content (LP), leaf N/P ratio (LN/P), specific leaf area (SLA), leaf tissue density (LTD), leaf dry matter content (LDMC), and maximum plant height (Hmax) to study how these plant functional traits regulate the relative biomass of different species and grassland productivity following fertilization. Our results showed, that under different nutrient addition levels, the linkages between plant functional traits and the relative biomass of different species were different. Community AGB was positively related to community-weighted mean LN (CWM_LN), CWM_LN/P, CWM_SLA, and CWM_Hmax, but negatively related to CWM_LTD and CWM_LDMC. Dominant species traits largely determined grassland productivity, in line with the mass ratio hypothesis. These findings further highlight the close linkages between community-level functional traits and grassland productivity. Our study contributes to the mechanisms underlying biodiversity-ecosystem function relationships and has significance for guiding semiarid grassland management.

10.
Ecotoxicol Environ Saf ; 230: 113137, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34979312

RESUMO

Soil cadmium (Cd) contamination is a serious problem on agricultural land. Adequate nitrogen (N) may help ameliorate plant fitness under Cd stress. This study examined the role of N application in improving maize tolerance to Cd stress. Two maize genotypes, Zhongke11 (larger root system) and Shengrui999 (smaller root system), were grown in a loessal soil amended with Cd (Cd0, no added Cd; Cd1, 20 mg kg-1 soil as CdCl2·2.5 H2O) and N (N0, no added N; N1, 100 mg kg-1 soil as urea) under greenhouse, and plants were assessed at silking and maturity stages. Maize plants exhibited moderate Cd stress with significantly reduced grain yield, especially under low N (N1). Roots accumulated more Cd than above-ground parts. Grain Cd concentration was the least (0.05-0.06 µg g-1) among all organs which is below the safety threshold. Leaf Cd concentrations (0.24-1.18 mg kg-1) were also under the toxicity threshold. Nitrogen addition significantly improved plant growth, chlorophyll content, photosynthesis traits, and tissue Cd contents, and reduced Cd concentration in soil compared to N0 treatment. Nitrogen promoted Cd bioconcentration and translocation factors in stem and leaves. Cadmium stress reduced N fertilizer agronomic efficiency at maturity. At maturity, root Cd content was positively correlated with root N and calcium accumulation, and stem Cd content was positively correlated with stem N content (both P ≤ 0.05). Genotypes with different root system size differed in response to Cd toxicity and / or N deficit. The small-rooted genotype Shengrui999 was more tolerant to moderate Cd stress than the large-rooted Zhongke11. Addition of N ameliorated Cd stress in both maize genotypes by improving plant growth performance, and regulating Cd translocations among plant organs.

11.
Plants (Basel) ; 10(12)2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34961252

RESUMO

Phenotypic variation and correlations among root traits form the basis for selecting and breeding soybean varieties with efficient access to water and nutrients and better adaptation to abiotic stresses. Therefore, it is important to develop a simple and consistent system to study root traits in soybean. In this study, we adopted the semi-hydroponic system to investigate the variability in root morphological traits of 171 soybean genotypes popularized in the Yangtze and Huaihe River regions, eastern China. Highly diverse phenotypes were observed: shoot height (18.7-86.7 cm per plant with a median of 52.3 cm); total root length (208-1663 cm per plant with a median of 885 cm); and root mass (dry weight) (19.4-251 mg per plant with a median of 124 mg). Both total root length and root mass exhibited significant positive correlation with shoot mass (p ≤ 0.05), indicating their relationship with plant growth and adaptation strategies. The nine selected traits contributed to one of the two principal components (eigenvalues > 1), accounting for 78.9% of the total genotypic variation. Agglomerative hierarchical clustering analysis separated the 171 genotypes into five major groups based on these root traits. Three selected genotypes with contrasting root systems were validated in soil-filled rhizoboxes (1.5 m deep) until maturity. Consistent ranking of the genotypes in some important root traits at various growth stages between the two experiments indicates the reliability of the semi-hydroponic system in phenotyping root trait variability at the early growth stage in soybean germplasms.

12.
Front Plant Sci ; 12: 723839, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745160

RESUMO

The grasslands on the semi-arid Loess Plateau of China are expected to be particularly responsive to the size and frequency changes of extreme precipitation events because their ecological processes are largely driven by distinct soil moisture pulses. However, the plant growth and competitiveness of co-dominant species in response to the changes in the amount and timing of soil water are still unclear. Thus, two co-dominant species, Bothriochloa ischaemum and Lespedeza davurica, were grown in seven mixture ratios under three watering regimes [80 ± 5% pot soil capacity (FC) (high watering), 60 ± 5% FC (moderate watering), and 40 ± 5% FC (low watering)] in a pot experiment. The soil water contents were rapidly improved from low to moderate water and from moderate to high water, respectively, at the heading, flowering, and maturity stages of B. ischaemum, and were maintained until the end of the growing season of each species. The biomass production of both species increased significantly with the increased soil water contents, particularly at the heading and flowering periods, with a more pronounced increase in B. ischaemum in the mixtures. The root/shoot ratio of both species was decreased when the soil water availability increased at the heading or flowering periods. The total biomass production, water use efficiency (WUE), and relative yield total (RYT) increased gradually with the increase of B. ischaemum in the mixtures. The relative competition intensity was below zero in B. ischaemum, and above zero in L. davurica. The competitive balance index calculated for B. ischaemum was increased with the increase of the soil water contents. Bothriochloa ischaemum responded more positively to the periodical increase in soil water availability than L. davurica, indicating that the abundance of B. ischaemum could increase in relatively wet seasons or plenty-rainfall periods. In addition, the mixture ratio of 10:2 (B. ischaemum to L. davurica) was the most compatible combination for the improved biomass production, WUE, and RYTs across all soil water treatments.

13.
BMC Plant Biol ; 21(1): 457, 2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34620078

RESUMO

BACKGROUND: Inoculation of arbuscular mycorrhizal (AM) fungi has the potential to alleviate salt stress in host plants through the mitigation of ionic imbalance. However, inoculation effects vary, and the underlying mechanisms remain unclear. Two maize genotypes (JD52, salt-tolerant with large root system, and FSY1, salt-sensitive with small root system) inoculated with or without AM fungus Funneliformis mosseae were grown in pots containing soil amended with 0 or 100 mM NaCl (incrementally added 32 days after sowing, DAS) in a greenhouse. Plants were assessed 59 DAS for plant growth, tissue Na+ and K+ contents, the expression of plant transporter genes responsible for Na+ and/or K+ uptake, translocation or compartmentation, and chloroplast ultrastructure alterations. RESULTS: Under 100 mM NaCl, AM plants of both genotypes grew better with denser root systems than non-AM plants. Relative to non-AM plants, the accumulation of Na+ and K+ was decreased in AM plant shoots but increased in AM roots with a decrease in the shoot: root Na+ ratio particularly in FSY1, accompanied by differential regulation of ion transporter genes (i.e., ZmSOS1, ZmHKT1, and ZmNHX). This induced a relatively higher Na+ efflux (recirculating) rate than K+ in AM shoots while the converse outcoming (higher Na+ influx rate than K+) in AM roots. The higher K+: Na+ ratio in AM shoots contributed to the maintenance of structural and functional integrity of chloroplasts in mesophyll cells. CONCLUSION: AM symbiosis improved maize salt tolerance by accelerating Na+ shoot-to-root translocation rate and mediating Na+/K+ distribution between shoots and roots.


Assuntos
Fungos/fisiologia , Raízes de Plantas/química , Brotos de Planta/química , Potássio/análise , Tolerância ao Sal/fisiologia , Sódio/análise , Zea mays/metabolismo , Zea mays/microbiologia , Variação Genética , Genótipo , Transporte de Íons/fisiologia , Micorrizas/fisiologia , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Potássio/metabolismo , Estresse Salino/fisiologia , Sódio/metabolismo , Simbiose/fisiologia , Zea mays/genética
14.
Sci Total Environ ; 799: 149482, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34365257

RESUMO

Exogenous fertilization could efficiently improve grassland productivity and promote grassland restoration. Increasing fertilization may profoundly affect community stability, whereas the underlying compensatory dynamics among functional groups in regulating grassland stability remain unclear. Three different grasslands, annuals forb (AF) community, perennial grass (PG) community and perennial forb (PF) community, on semiarid Loess Plateau were selected. We designed a 3-year split-plot experiment (main-plot: 0, 25, 50, and 100 kg N ha-1 yr-1; subplot: 0, 20, 40 and 80 kg P2O5 ha-1 yr-1) to explore how N and P addition affects community stability and its relationship with species richness, species asynchrony and functional group stability. Temporal stability differed largely between functional groups under N and P addition, perennial forbs or grasses had higher stability than perennial legumes or annuals and biennials. Decreased stability of PG and PF communities was primarily due to reduced species asynchrony under N addition alone, while it attributed to increased dominance of perennial legumes after P addition alone. 50 and 100 kg N ha-1 yr-1 combined with P addition significantly increased dominance of annuals and biennials, but decreased stability of annuals and biennials, which caused significant declines in stability of the three communities. Significant species richness decline induced by N and P addition only occurred in AF community, which suppressed AF community stability through reducing species asynchrony. AF community stability was regulated by additively negative effect of diversity decline and decreased annuals and biennials stability. Whereas, in PG and PF communities, nutrient-induced changes of functional groups stability were the main driver of community stability rather than diversity. Our study highlights the role of functional group composition and dynamics in regulating the effects of diversity on community stability and rational N and P combined addition was essential for conserving stability of different grasslands on semiarid Loess Plateau.


Assuntos
Fabaceae , Pradaria , Biodiversidade , Poaceae
15.
Huan Jing Ke Xue ; 41(1): 479-488, 2020 Jan 08.
Artigo em Chinês | MEDLINE | ID: mdl-31854951

RESUMO

Understanding the soil respiration characteristics in response to nitrogen and phosphorus addition in farming-withdrawn grasslands within semi-arid loess hilly-gully regions is of great importance for providing a theoretical basis for evaluating the effects of artificial regulation approaches on carbon cycling. We report on a field experiment that was undertaken from May to September 2018 in a farming-withdrawn grassland ecosystem in China, which is dominated by Stipa bungeana and Lespedeza davurica. Three different levels of nitrogen and phosphorus additions were used, including three main plots of N[0, 50, and 100 kg·(hm2·a)-1] and three subplots of P (P2O5)[0,40, and 80 kg·(hm2·a)-1]. The soil respiration rate, heterotrophic respiration rate, soil temperature, and soil moisture were measured monthly in each treatment. Results showed that N and P addition had no effect on soil temperature or moisture content (P>0.05). The soil respiration rate showed an obvious monthly variation and peaked in July. In the treatment without fertilizer addition, the monthly mean soil respiration rate, heterotrophic respiration rate, and autotrophic respiration rate were 0.69, 0.39, and 0.29 g·(m2·h)-1, respectively. P addition had no significant effect on the soil respiration rate and its components without N addition (P>0.05). Under conditions of N addition, P addition significantly increased the soil respiration rate and its component (P<0.05). The monthly mean soil respiration rate, heterotrophic respiration rate, and autotrophic respiration rate were 0.93, 0.50, and 0.47 g·(m2·h)-1, respectively. The Q10 (i.e., temperature sensitivity) values for soil respiration, heterotrophic respiration, and autotrophic respiration in unfertilized soil were 1.86, 2.36, and 2.24, respectively. The addition of N and P reduced the Q10 value of soil respiration and its components. Our findings suggest that the response of soil respiration and its two components to N and P addition in studied farming-withdrawn grassland in the semiarid loess hilly-gully region were closely related to their addition amounts.


Assuntos
Pradaria , Nitrogênio/química , Fósforo/química , Solo/química , Agricultura , China
16.
Ying Yong Sheng Tai Xue Bao ; 30(11): 3697-3706, 2019 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-31833682

RESUMO

To analyze plant functional traits of dominant species to nitrogen and phosphorus addition, three species (Bothriochloa ischaemum, Stipa bungeana, and Lespedeza davurica) were selected in the loess hilly-gully region. A split-plot experiment which included three N treatments (0, 50, and 100 kg N·hm-2·a-1) and three P treatments (0, 40, and 80 kg P2O5·hm-2·a-1) was conducted. At the fast-growing stage, leaf length, leaf width, specific leaf area, leaf dry matter content, leaf N content, leaf P content, and leaf N:P were measured. Results showed that under 50 and 100 kg N·hm-2·a-1 treatments, leaf length and width of B. ischaemum increased significantly by 35.3% and 64.4%, respectively, while only the leaf length of S. bungeana and the leaf width of L. davurica increased significantly by 58.8% and 33.9%, respectively. Leaf dry matter content of the three species decreased significantly by 10.7%, 15.3% and 11.2%, respectively. Leaf N content and N:P of B. ischaemum and S. bungeana increased significantly by 23.0% and 99.2%, 45.8% and 96.9%, respectively, compared with unfertilized treatments. Under 40 and 80 kg P2O5·hm-2·a-1 treatments, leaf length, leaf width and specific leaf area of L. davurica increased significantly by 56.9%, 41.4% and 19.6%, respectively, while leaf dry matter content decreased significantly by 14.9%. Leaf P content of three species increased significantly by 96.7%, 110.9% and 238.4%, while the N:P decreased significantly by 45.8%, 42.8% and 53.7%, respectively, compared with those under unfertilized. Under 50 kg N·hm-2·a-1 treatment, compared with no P application, leaf length and leaf width of L. davurica and leaf P content of the three species significantly increased, and leaf N content of B. ischaemum and S. bungeana decreased significantly at 40 and 80 kg P2O5·hm-2·a-1 treatments. Under 100 kg N·hm-2·a-1 treatment, leaf length of B. ischaemum and S. bungeana, leaf width of L. davurica and leaf P content of three species significantly increased, while leaf N content of B. ischaemum decreased significantly after P application. In summary, functional traits of dominant species showed significant responses to short-term nitrogen and phosphorus addition, with the different responses were mainly related to species traits and fertilization levels. Such difference reflected plant adaptation to habitat changes. The divergent responses of different species to nitrogen and phosphorus addition played an important role in maintaining diversity and stability of grassland communities.


Assuntos
Nitrogênio , Fósforo , Pradaria , Folhas de Planta , Poaceae
17.
Plant Physiol Biochem ; 130: 613-622, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30121513

RESUMO

The multifunctional Orange (Or) protein plays crucial roles in carotenoid homeostasis, photosynthesis stabilization, and antioxidant activity in plants under various abiotic stress conditions. The Or gene has been cloned in several crops but not in alfalfa (Medicago sativa L.). Alfalfa is widely cultivated across the world; however, its cultivation is largely limited by various abiotic stresses, including drought. In this study, we isolated the Or gene from alfalfa (MsOr) cv. Xinjiang Daye. The amino acid sequence of the deduced MsOr protein revealed that the protein contained two trans-membrane domains and a DnaJ cysteine-rich zinc finger domain, and showed a high level of similarity with the Or protein of other plants species. The MsOr protein was localized in leaf chloroplasts of tobacco. The expression of MsOr was the highest in mature leaves and was significantly induced by abiotic stresses, especially drought. To perform functional analysis of the MsOr gene, we overexpressed MsOr gene in tobacco (Nicotiana benthamiana). Compared with wild-type (WT) plants, transgenic tobacco lines showed higher carotenoid accumulation and increased tolerance to various abiotic stresses, including drought, heat, salt, and methyl viologen-mediated oxidative stress. Additionally, contents of hydrogen peroxide and malondialdehyde were lower in the transgenic lines than in WT plants, suggesting superior membrane stability and antioxidant capacity of TOR lines under multiple abiotic stresses. These results indicate the MsOr gene as a potential target for the development of alfalfa cultivars with enhanced carotenoid content and tolerance to multiple environmental stresses.


Assuntos
Carotenoides/metabolismo , Genes de Plantas/genética , Proteínas de Choque Térmico/genética , Medicago sativa/genética , Nicotiana/genética , Proteínas de Plantas/genética , Cloroplastos/genética , Desidratação , Perfilação da Expressão Gênica , Genes de Plantas/fisiologia , Proteínas de Choque Térmico/fisiologia , Resposta ao Choque Térmico , Estresse Oxidativo , Proteínas de Plantas/fisiologia , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tolerância ao Sal , Nicotiana/metabolismo , Nicotiana/fisiologia
18.
Front Plant Sci ; 9: 1050, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30131814

RESUMO

Rainfall is the main resource of soil moisture in the semiarid areas, and the altered rainfall pattern would greatly affect plant growth and development. Root morphological traits are critical for plant adaptation to changeable soil moisture. This study aimed to clarify how root morphological traits of Bothriochloa ischaemum (a C4 herbaceous species) and Lespedeza davurica (a C3 leguminous species) in response to variable soil moisture in their mixtures. The two species were co-cultivated in pots at seven mixture ratios under three soil water regimes [80% (HW), 60% (MW), and 40% (LW) of soil moisture field capacity (FC)]. At the jointing, flowering, and filling stages of B. ischaemum, the LW and MW treatments were rewatered to MW or HW, respectively. At the end of growth season, root morphological traits of two species were evaluated. Results showed that the root morphological response of B. ischaemum was more sensitive than that of L. davurica under rewatering. The total root length (TRL) and root surface area (RSA) of both species increased as their mixture ratio decreased, which suggested that mixed plantation of the two species would be beneficial for their own root growth. Among all treatments, the increase of root biomass (RB), TRL, and RSA reached the highest levels when soil water content increased from 40 to 80% FC at the jointing stage. Our results implied that species-specific response in root morphological traits to alternated rainfall pattern would greatly affect community structure, and large rainfall occurring at early growth stages would greatly increase their root growth in the semiarid environments.

19.
Front Plant Sci ; 9: 165, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29487611

RESUMO

Water and fertilizers affect the nitrogen (N) and phosphorus (P) acquisition and allocation among organs in dominant species in natural vegetation on the semiarid Loess Plateau. This study aimed to clarify the N and P accumulation and N:P ratio at organ and plant level of a local legume species mixed with a grass species under varying water and fertilizer supplies, and thus to fully understand the requirements and balance of nutrient elements in response to growth conditions change of native species. The N and P concentration in the organ (leaf, stem, and root) and plant level of Lespedeza davurica (C3 legume), were examined when intercropped with Bothriochloa ischaemum (C4 grass). The two species were grown outdoors in pots under 80, 60, and 40% of soil water field capacity (FC), -NP, +N, +P, and +NP supply and the grass:legume mixture ratios of 2:10, 4:8, 6:6, 8:4, 10:2, and 12:0. The three set of treatments were under a randomized complete block design. Intercropping with B. ischaemum did not affect N concentrations in leaf, stem and root of L. davurica, but reduced P concentration in each organ under P fertilization. Only leaf N concentration in L. davurica showed decreasing trend as soil water content decreased under all fertilization and mixture proportion treatments. Stems had the lowest, while roots had the highest N and P concentration. As the mixture proportion of L. davurica decreased under P fertilization, P concentration in leaf and root also decreased. The N concentration in L. davurica at the whole plant level was 11.1-17.2%. P fertilization improved P concentration, while decreased N:P ratio in L. davurica. The N:P ratios were less than 14.0 under +P and +NP treatments. Our results implied that exogenous N and P fertilizer application may change the N:P stoichiometry and influence the balance between nutrients and organs of native dominant species in natural grassland, and P element should be paid more attention when considering rehabilitating degraded grassland via fertilization application in semiarid Loess Plateau region.

20.
Front Plant Sci ; 8: 672, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28507555

RESUMO

To determine root growth and grain yield of winter wheat (Triticum aestivum L) under moderate drought stress, a nursery experiment and a field trial were conducted with or without water stress using three representative cultivars released in different years: CW134 (old landrace), CH58 (modern cultivar) and CH1 (new release). In the nursery experiment, plants were grown in soil-filled rhizoboxes under moderate drought (MD, 55% of field capacity) or well-watered (WW, 85% of field capacity) conditions. In the field trial, plots were either rainfed (moderate drought stress) or irrigated with 30 mm of water at each of stem elongation, booting and anthesis stages (irrigated). Compared to drought stress, grain yields increased under sufficient water supply in all cultivars, particular the newly released cultivar CH1 with 70% increase in the nursery and 23% in the field. When well-watered (nursery) or irrigated (field), CH1 had the highest grain yields compared to the other two cultivars, but produced similar yield to the modern cultivar (CH58) under water-stressed (nursery) or rainfed (field) conditions. When exposed to drought stress, CW134 had the highest topsoil root dry mass in topsoil but lowest in subsoil among the cultivars at stem elongation, anthesis, and maturity, respectively; while CH1 had the lowest topsoil and highest subsoil root dry mass at respective sampling times. Topsoil root mass and root length density were negatively correlated with grain yield for the two water treatments in nursery experiment. When water was limited, subsoil root mass was positively correlated with thousand kernel weight (TKW). In the field trial, CH1 and CH58 used less water during vegetative growth than CW134, but after anthesis stage, CH1 used more water than the other two cultivars, especially in the soil profile below 100 cm, which was associated with the increased TKW. This study demonstrated that greater root mass and root length density in subsoil layers, with enhanced access to subsoil water after anthesis, contribute to high grain yield when soil water is scarce.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...