Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Colloids Surf B Biointerfaces ; 201: 111632, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33667865

RESUMO

Prodrug nanoparticles with cleavable moieties sensitive to intracellular stimuli have drawn great attention on cancer chemotherapy. Herein, a reactive oxygen species (ROS)-responsive doxorubicin prodrug mPEG-Phe-TK-Phe-hyd-DOX was synthesized, in which hydrophilic methoxy poly(ethylene glycol) (mPEG) and hydrophobic anticancer drug doxorubicin (DOX) were conjugated with hydrazone (hyd) and ROS-responsive thioketal (TK) moieties. The ROS-responsiveness of prodrug was confirmed by proton nuclear magnetic resonance (1H NMR) and dynamic light scattering (DLS). Unexpectedly, the results of in vitro drug release indicated that the hydrazone bond of prodrug nanoparticles was insensitive to pH, which may be due to the strong hydrophobicity, π-π interactions and cation-π interactions jointly inhibited the hydrolysis of hydrazone bonds under acidic conditions. The cellular uptake and in vitro anticancer study showed that ROS-responsive prodrug nanoparticles exhibited faster cellular uptake and better anticancer efficacy. The in vivo experiments showed that the ROS-responsive prodrug nanoparticles had comparable antitumor efficacy with free anticancer drug DOX and reduced organ toxicity. Our results provide novel idea of successfully design multi-stimuli-responsive nano-drug carrier.


Assuntos
Nanopartículas , Pró-Fármacos , Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Hidrazonas , Concentração de Íons de Hidrogênio , Pró-Fármacos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...