Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Bot ; 75(13): 4052-4073, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38497908

RESUMO

The glutamine synthetase/glutamic acid synthetase (GS/GOGAT) cycle plays important roles in N metabolism, growth, development, and stress resistance in plants. Excess ammonium (NH4+) restricts growth, but GS can help to alleviate its toxicity. In this study, the 84K model clone of hybrid poplar (Populus alba × P. tremula var. glandulosa), which has reduced biomass accumulation and leaf chlorosis under high-NH4+ stress, showed less severe symptoms in transgenic lines overexpressing GLUTAMINE SYNTHETASE 1;2 (GS1;2-OE), and more severe symptoms in RNAi lines (GS1;2-RNAi). Compared with the wild type, the GS1;2-OE lines had increased GS and GOGAT activities and higher contents of free amino acids, soluble proteins, total N, and chlorophyll under high-NH4+ stress, whilst the antioxidant and NH4+ assimilation capacities of the GS1;2-RNAi lines were decreased. The total C content and C/N ratio in roots and leaves of the overexpression lines were higher under stress, and there were increased contents of various amino acids and sugar alcohols, and reduced contents of carbohydrates in the roots. Under high-NH4+ stress, genes related to amino acid biosynthesis, sucrose and starch degradation, galactose metabolism, and the antioxidant system were significantly up-regulated in the roots of the overexpression lines. Thus, overexpression of GS1;2 affected the carbon and amino acid metabolism pathways under high-NH4+ stress to help maintain the balance between C and N metabolism and alleviate the symptoms of toxicity. Modification of the GS/GOGAT cycle by genetic engineering is therefore a potential strategy for improving the NH4+ tolerance of cultivated trees.


Assuntos
Compostos de Amônio , Carbono , Glutamato-Amônia Ligase , Nitrogênio , Plantas Geneticamente Modificadas , Populus , Populus/genética , Populus/metabolismo , Populus/enzimologia , Glutamato-Amônia Ligase/metabolismo , Glutamato-Amônia Ligase/genética , Nitrogênio/metabolismo , Carbono/metabolismo , Compostos de Amônio/metabolismo , Compostos de Amônio/toxicidade , Plantas Geneticamente Modificadas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
3.
Gene ; 851: 146996, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36283603

RESUMO

Glutamate synthase (GOGAT) is a key enzyme in glutamine synthetase (GS)/GOGAT cycle and at the hub of carbon and nitrogen metabolism, catalyzing the formation of glutamate from α-oxoglutarate and glutamine. In this study, members of GOGAT family in Populus trichocarpa were identified and analyzed by bioinformatics. The four PtGOGATs were divided into two subgroups: subgroup A (Fd-GOGAT1 and Fd-GOGAT2) and subgroup B (NADH-GOGAT1 and NADH-GOGAT2). Many important elements have been identified in the promoters of different PtGOGATs, including hormone- and light-responsive elements. Meanwhile, the transcript levels of PxGOGATs were affected by light and diurnal cycle. Quantitative real-time PCR showed PxFd-GOGATs and PxNADH-GOGATs were mainly expressed in leaves and roots in Populus × xiaohei T. S. Hwang et Liang, respectively. Under elevated CO2, PxGOGATs were suppressed in all tissues except the stem. And PxFd-GOGATs and PxNADH-GOGATs were strongly induced by nitrogen in leaves and roots, respectively. In addition, PxGOGATs were stimulated significantly in roots in response to NH4+and glutamine directly. Our results provide new insights about GOGATs in poplar and their expression patterns under exogenous substances, to lay molecular basis for studying gene function and provide a reference for exploring putative roles of GOGATs in carbon-nitrogen balance.


Assuntos
Glutamato Sintase , Populus , Glutamato Sintase/genética , Populus/genética , Populus/metabolismo , Nitrogênio/farmacologia , Nitrogênio/metabolismo , Carbono/metabolismo , Glutamina/metabolismo , NAD/genética , NAD/metabolismo , Regulação da Expressão Gênica de Plantas
4.
J Oncol ; 2022: 7467797, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35211172

RESUMO

BACKGROUND: Pancreatic cancer (PC) has a high mortality and dismal prognosis, predicting to be the second most lethal malignancy. 5-Methylcytosine (m5C) and long noncoding RNAs (lncRNAs) are both crucial in the prognostic outcome and immunotherapeutic effect for PC patients. Therefore, we aimed to create an m5C-related lncRNA signature (m5C-LS) for PC patients' prognosis and treatment. METHODS: Clinicopathological information and RNAseq data were acquired from The Cancer Genome Atlas (TCGA) database. Pearson's correlation analysis was used to extract m5C-related lncRNAs in PC. Univariate, least absolute shrinkage and selection operator (LASSO), and multivariate Cox analyses were adopted to build an m5C-LS. Kaplan-Meier (K-M), principal component analysis (PCA), and nomogram were utilized to assess model accuracy. In addition, we explored the model's possible immunotherapeutic responses and drug sensitivity targets. RESULTS: Three m5C-related lncRNAs were finally established to construct the risk signature, which has a good and independent predictive ability for PC patients. Based on the m5C-LS, patients were classified into the low- and high-m5C-LS group, with the latter having a worse prognosis. Furthermore, the m5C-LS allowed us to better discriminate the immunotherapeutic responses of PC patients in different subgroups. CONCLUSIONS: Our study constructed an m5C-LS and established a nomogram model that accurately predicted the prognosis of PC patients, as well as provides promising immunotherapeutic strategies in the future.

5.
3 Biotech ; 12(3): 67, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35223353

RESUMO

Pectin is one of the most important components of the plant cell wall. Galacturonosyltransferase-like (GATL) is an important enzyme involved in forming pectin in Arabidopsis thaliana. In this study, 12 PtGATL genes were identified and characterized based on the Populus trichocarpa genome using bioinformatics methods. The results showed that the PtGATLs contained four typical motifs, including DXD, LPPF, GLG, and HXXGXXKPW. According to phylogenetic analysis, PtGATLs were divided into six groups. Chromosome distribution and genome synteny analysis showed that there were 11 segmental-duplicated gene pairs with repeated fragments on chromosomes 2, 5, 7, 8, 10, and 14. Tissue-specific expression profiles indicated that these PtGATLs had different expression patterns. The transcription level of PtGATLs was regulated by different carbon dioxide and nitrogen concentrations. In conclusion, the identification and analysis of PtGATL genes in poplar provide important information on the gene function. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-022-03129-y.

6.
3 Biotech ; 11(8): 370, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34295610

RESUMO

Plant Pectin acetylesterase (PAE) belongs to family CE13 of carbohydrate esterases in the CAZy database. The ability of PAE to regulate the degree of acetylation of pectin, an important polysaccharide in the cell wall, affects the structure of plant cell wall. In this study, ten PtPAE genes were identified and characterized in Populus trichocarpa genome using bioinformatics methods, and the physiochemical properties such as molecular weight, isoelectric points, and hydrophilicity, as well as the secondary and tertiary structure of the protein were predicted. According to phylogenetic analysis, ten PtPAEs can be divided into three evolutionary clades, each of which had similar gene structure and motifs. Tissue-specific expression profiles indicated that the PtPAEs had different expression patterns. Real-time quantitative PCR (RT-qPCR) analysis showed that transcription level of PtPAEs was regulated by different CO2 and nitrogen concentrations. These results provide important information for the study of the phylogenetic relationship and function of PtPAEs in Populus trichocarpa. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-021-02918-1.

7.
RSC Adv ; 11(53): 33294-33299, 2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-35497514

RESUMO

A novel fluorescent quinolizinium-based turn-off probe has been developed for selective detection of cysteine. The probe showed high selectivity and sensitivity towards cysteine over other amino acids including the similarly structured homocysteine and glutathione with a detection limit of 0.18 µM (S/N = 3). It was successfully applied to cysteine detection in living cells with low cytotoxicity and quantitative analysis of spiked mouse serum samples with moderate to good recovery (96-109%).

8.
Gene Expr Patterns ; 38: 119142, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32898702

RESUMO

Reversible glycosylation polypeptide (RGP) is a type of plant-specific protein, primarily involved in the biosynthesis of cell wall polysaccharides, which in turn changes the shape of the cell walls and affects the wood properties of plants. Poplar is a major industrial timber species, and the RGP gene has not been studied. This study uses bioinformatics methods to predict physical and chemical characters such as molecular weight, isoelectric point, and hydrophilicity; and fluorescent quantitative method to determine the effect of different forms of nitrogen on the transcription level of the gene family. The results showed that there are six RGP homologous genes in the Populus trichocarpa genome, which were distributed on the six chromosomes of P. trichocarpa. The family members have a simple gene structure and contain four exons and introns. Phylogenetic tree analysis showed that RGP genes all belong to Class I in P. trichocarpa. Tissue-specific expression analysis showed that PtRGP1 and PtRGP2 were highly expressed in the stems, PtRGP4 and PtRGP5 were highly expressed in the upper leaves, PtRGR3 and PtRGR6 were expressed in stems and internodes, but the relative expression is not high. Quantitative real-time RT-PCR (qRT-PCR) analyses revealed that PtRGP3 and 6 were up-regulated in the upper stem in response to the low ammonium and high nitrate treatments. The influence of nitrogen on the expression of PtRGP3 and 6 genes may affect the formation of the plant secondary cell wall. This study lays a foundation for further study on the function of RGP genes in P. trichocarpa.


Assuntos
Glucosiltransferases/genética , Nitratos/metabolismo , Proteínas de Plantas/genética , Populus/genética , Amônia/metabolismo , Genoma de Planta , Glucosiltransferases/metabolismo , Família Multigênica , Nitratos/farmacologia , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Caules de Planta/metabolismo , Populus/efeitos dos fármacos , Populus/metabolismo , Estresse Fisiológico
9.
Zootaxa ; 3963(3): 335-68, 2015 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-26249404

RESUMO

The Chinese endemic water beetle Amphizoa davidi Lucas, is a rare and endangered species belonging to the monotypic family Amphizoidae (Coleoptera: Adephaga). A study of the external and internal structures of A. davidi is here presented, by using X-ray phase contrast tomography and light microscopy. Morphological details and three dimensional (3D) structures of this species are provided: skeletons, muscles, reproductive organs of male and female, nervous system, alimentary canal and pygidial gland. The reproductive organs of females are compared in two different developmental phases (ages): before copulation without mature ovaries and after copulation with mature ovaries. Such detailed 3D tomographic study based on micro-CT technology may promote our understanding of the detailed morphology in Amphizoidae and Coleoptera in general.


Assuntos
Estruturas Animais/anatomia & histologia , Besouros/anatomia & histologia , Distribuição Animal , Estruturas Animais/crescimento & desenvolvimento , Animais , Tamanho Corporal , Besouros/classificação , Besouros/crescimento & desenvolvimento , Ecossistema , Feminino , Masculino , Tamanho do Órgão , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...