Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1232880, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37546258

RESUMO

Jasmonic acid (JA) is a phytohormone involved in plant defense, growth, and development, etc. However, the regulatory mechanisms underlying JA-mediated lignin deposition and secondary cell wall (SCW) formation remain poorly understood. In this study, we found that JA can inhibit lignin deposition and SCW thickening in poplar trees through exogenous MeJA treatment and observation of the phenotypes of a JA synthesis mutant, opdat1. Hence, we identified a JA signal inhibitor PtoJAZ5, belonging to the TIFY gene family, which is involved in the regulation of secondary vascular development of Populus tomentosa. RT-qPCR and GUS staining revealed that PtoJAZ5 was highly expressed in poplar stems, particularly in developing xylem. Overexpression of PtoJAZ5 inhibited SCW thickening and down-regulated the expression of SCW biosynthesis-related genes. Further biochemical analysis showed that PtoJAZ5 interacted with multiple SCW switches NAC/MYB transcription factors, including MYB3 and WND6A, through yeast two-hybrid and bimolecular fluorescent complementation experiments. Transcriptional activation assays demonstrated that MYB3-PtoJAZ5 and WND6A-PtoJAZ5 complexes regulated the expression of lignin synthetic genes. Our results suggest that PtoJAZ5 plays a negative role in JA-induced lignin deposition and SCW thickening in poplar and provide new insights into the molecular mechanisms underlying JA-mediated regulation of SCW formation.

2.
Regen Ther ; 23: 76-83, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37131535

RESUMO

In this study, different concentrations of 17-ß estradiol silk fibroin (SF)porous scaffolds (SFPS) were prepared using freeze-drying technique, with a hope for optimal concentration and apply it locally to the bone defect area. In this study, the porous scaffold morphology structure was characterized by SEM, FTIR and universal capacity testing machines, and the in vitro cytocompatibility and biological activity of scaffold materials were studied by cell adhesion, viability and proliferation experiments. The results showed that SFPS boasts better physicochemical properties, while 17-ß estradiol SF scaffolds with low concentrations of 10-10 mol/L and 10-12 mol/L had more growth and proliferation of SF scaffolds with higher concentrations, and 10-10 mol/L was the optimal concentration of 17-ß estradiol SFPS, which was more conducive to cell adhesion and proliferation. On the other hand, after osteogenesis induction of BMSCs inoculated on 17-ß estradiol SFPS at different concentrations, it was found that the expression of alkaline phosphatase in BMSCs on different concentrations of 17-ß estradiol porous scaffolds was not large. No conflict of interest exits in the submission of this manuscript.

3.
ACS Biomater Sci Eng ; 9(1): 165-181, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36472618

RESUMO

Various modifications performed on titanium alloy surfaces are shown to improve osteointegration and promote the long-term success of implants. In this work, a bioactive nanostructured hydroxyapatite (HA) composite coating with a variable morphology mediated by silk fibroin (SF) and its derived peptides (Cs) was prepared. Numerous experimental techniques were used to characterize the constructed coatings in terms of morphology, roughness, hydrophilicity, protein adsorption, in vitro biomineralization, and adhesion strength. The mixed protein layer with different contents of SF and Cs exhibited different secondary structures at different temperatures, effectively mediating the electrodeposited HA layer with different characteristics and finally forming proteins/HA composite coatings with versatile morphologies. The addition of Cs significantly improved the hydrophilicity and protein adsorption capacity of the composite coatings, while the electrodeposition of the HA layer effectively enhanced the adhesion between the composite coatings and Ti surface. In the in vitro mineralization experiments, all the composite coatings exhibited excellent apatite formation ability. Moreover, the composite coatings showed excellent cell growth and proliferation activity. Osteogenic induction experiments revealed that the coating could significantly increase the expression of specific osteogenic markers, including ALP, Col-I, Runx-2, and OCN. Overall, the proposed modification of the Ti implant surface by protein/HA coatings had good potential for clinical applications in enhancing bone induction and osteogenic activity of implants.


Assuntos
Durapatita , Fibroínas , Durapatita/farmacologia , Durapatita/química , Titânio/farmacologia , Titânio/química , Fibroínas/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia , Materiais Revestidos Biocompatíveis/química , Biomimética , Propriedades de Superfície , Peptídeos/farmacologia
4.
Int J Biol Macromol ; 215: 155-168, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35716796

RESUMO

The construction of suitable biomaterials for pulp regeneration has always been a major challenge in the field of stomatology. Considering the complex and irregular anatomy of the root canal system, injectable hydrogels have received extensive attention as cell carriers in dental pulp regeneration. Here, we developed an injectable photocrosslinked methacrylylated silk fibroin (RSFMA)/methacrylylated hyaluronic acid (MeHA) composite hydrogel and characterized its physicochemical properties. The biocompatibility of encapsulated human dental pulp stem cells (hDPSCs) was subsequently investigated. With the addition of RSFMA, the pore size of the scaffolds became more regular with negligible change in porosity and exhibited excellent mechanical properties. Furthermore, the low concentration of RSFMA hydrogel in the composite hydrogel had higher cross-linking efficiency. In contrast to MeHA hydrogels, hDPSCs were encapsulated in hydrogels either in the absence or presence of high concentrations of RSFMA. The results indicated that cells in low-concentration RSFMA composite gel presented better growth ability, proliferation ability and osteogenic differentiation ability. This injectable photocrosslinked silk fibroin/hyaluronic acid hydrogel shows great potential in the field of dental pulp tissue engineering.


Assuntos
Fibroínas , Polpa Dentária , Fibroínas/química , Fibroínas/farmacologia , Humanos , Ácido Hialurônico/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Osteogênese , Regeneração , Seda/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química
5.
Int J Biol Macromol ; 185: 1022-1035, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34197859

RESUMO

Biochemical modification can endow the surface of implants with superior biological activity. Herein, silk fibroin (SF) protein and its anionic derivative peptides (Cs) were covalently immobilized onto a titanium implant surface via a polydopamine layer. The successful conjugation of SF and Cs was revealed by X-ray photoelectron spectroscopy (XPS), field-emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), and contact angle measurements. The addition of Cs prevented the conformational transition of silk fibroin to silk II. The deposition of apatite on its surface was significantly accelerated, and the bioactive composite coating was observed to enhance protein adsorption and cell proliferation. More importantly, it also promoted the osteogenic differentiation of bone marrow stem cells (BMSCs) for the quantitative and qualitative detection of alkaline phosphatase (ALP) and alizarin red (ARS). Overall, the stable performance and enhanced osteogenic property of the composite coating promote an extensive application for clinical titanium-based implants.


Assuntos
Fibroínas/farmacologia , Indóis/química , Células-Tronco Mesenquimais/citologia , Osteogênese/efeitos dos fármacos , Polímeros/química , Titânio/química , Adsorção , Animais , Apatitas/química , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Fibroínas/química , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , Microscopia de Força Atômica , Oxirredução , Peptídeos/química , Peptídeos/farmacologia , Espectroscopia Fotoeletrônica
6.
Biomed Mater ; 16(4)2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34098538

RESUMO

In this study, the silk fibroin/nano-hydroxyapatite/hyaluronic acid (SF/nHAp/HA) composite scaffolds with different HA contents were developed by blending, cross-linking and freeze-drying, and their physicochemical properties and cell biocompatibilityin vitrowere subsequently studied. It was observed that the molecular conformation of the composite scaffolds was mainly composed of silk I and a small amount of theß-sheets structure. On enhancing the HA content, the pore size of the scaffold decreased, while the porosity, water absorption, swelling ratio and mechanical properties were observed to increase. In particular, the SF/nHAp/HA scaffold with a 5.0 wt% ratio exhibited the highest water absorption and mechanical properties among the developed materials. In addition, thein vitrocytocompatibility analysis showed that the bone marrow mesenchymal stem cells exhibited excellent cell proliferation and osteogenic differentiation ability on the SF/nHAp/5.0 wt%HA scaffolds, as compared with the other scaffolds. It can be concluded that the developed composite scaffolds represent a promising class of materials for the bone tissue repair and regeneration.


Assuntos
Durapatita , Fibroínas , Ácido Hialurônico , Nanoestruturas/química , Alicerces Teciduais/química , Animais , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Durapatita/química , Durapatita/farmacologia , Fibroínas/química , Fibroínas/farmacologia , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
7.
Biotechnol Biofuels ; 13: 9, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31988661

RESUMO

BACKGROUND: As a leading biomass feedstock, poplar plants provide enormous lignocellulose resource convertible for biofuels and bio-chemicals. However, lignocellulose recalcitrance particularly in wood plants, basically causes a costly bioethanol production unacceptable for commercial marketing with potential secondary pollution to the environment. Therefore, it becomes important to reduce lignocellulose recalcitrance by genetic modification of plant cell walls, and meanwhile to establish advanced biomass process technology in woody plants. Brassinosteroids, plant-specific steroid hormones, are considered to participate in plant growth and development for biomass production, but little has been reported about brassinosteroids roles in plant cell wall assembly and modification. In this study, we generated transgenic poplar plant that overexpressed DEETIOLATED2 gene for brassinosteroids overproduction. We then detected cell wall feature alteration and examined biomass enzymatic saccharification for bioethanol production under various chemical pretreatments. RESULTS: Compared with wild type, the PtoDET2 overexpressed transgenic plants contained much higher brassinosteroids levels. The transgenic poplar also exhibited significantly enhanced plant growth rate and biomass yield by increasing xylem development and cell wall polymer deposition. Meanwhile, the transgenic plants showed significantly improved lignocellulose features such as reduced cellulose crystalline index and degree of polymerization values and decreased hemicellulose xylose/arabinose ratio for raised biomass porosity and accessibility, which led to integrated enhancement on biomass enzymatic saccharification and bioethanol yield under various chemical pretreatments. In contrast, the CRISPR/Cas9-generated mutation of PtoDET2 showed significantly lower brassinosteroids level for reduced biomass saccharification and bioethanol yield, compared to the wild type. Notably, the optimal green-like pretreatment could even achieve the highest bioethanol yield by effective lignin extraction in the transgenic plant. Hence, this study proposed a mechanistic model elucidating how brassinosteroid regulates cell wall modification for reduced lignocellulose recalcitrance and increased biomass porosity and accessibility for high bioethanol production. CONCLUSIONS: This study has demonstrated a powerful strategy to enhance cellulosic bioethanol production by regulating brassinosteroid biosynthesis for reducing lignocellulose recalcitrance in the transgenic poplar plants. It has also provided a green-like process for biomass pretreatment and enzymatic saccharification in poplar and beyond.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...