Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 240(6): 2455-2467, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37799006

RESUMO

The conserved Spt-Ada-Gcn5-Acetyltransferase (SAGA) complex controls eukaryotic transcription by modifying acetylation of histones. However, the mechanisms for this complex in regulating the transcription of target-specific genes remain largely unknown in phytopathogenic fungi. A filamentous fungal-specific transcription factor FgStuA was identified to interact with the SAGA complex physically. The coordinative mechanisms of FgStuA with the SAGA complex in regulating secondary metabolism and virulence were investigated in Fusarium graminearum with genetic, biochemical and molecular techniques. The transcription factor FgStuA binds to a 7-bp cis-element (BVTGCAK) of its target gene promoter. Under mycotoxin deoxynivalenol (DON) induction conditions, FgStuA recruits the SAGA complex into the promoter of TRI6, a core regulator of the DON biosynthesis gene cluster, leading to enhanced transcription of TRI6. During this process, we found that FgStuA is subject to acetylation by the SAGA complex, and acetylation of FgStuA plays a critical role for its enrichment in the TRI6 promoter. In addition, FgStuA together with the SAGA complex modulates fungal virulence. This study uncovers a novel regulatory mechanism of a transcription factor, which recruits and interacts with the SAGA complex to activate specific gene expression in pathogenic fungi.


Assuntos
Fusarium , Micotoxinas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Metabolismo Secundário , Virulência , Micotoxinas/metabolismo , Fungos/metabolismo
2.
Environ Microbiol ; 23(9): 5505-5524, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34347361

RESUMO

Members of the NDR (nuclear Dbf2-related) protein-kinase family are essential for cell differentiation and polarized morphogenesis. However, their functions in plant pathogenic fungi are not well understood. Here, we characterized the NDR kinase FgCot1 and its activator FgMob2 in Fusarium graminearum, a major pathogen causing Fusarium head blight (FHB) in wheat. FgCot1 and FgMob2 formed a NDR kinase-MOB protein complex. Localization assays using FgCot1-GFP or FgMob2-RFP constructs showed diverse subcellular localizations, including cytoplasm, septum, nucleus and hyphal tip. ΔFgcot1 and ΔFgmob2 exhibited serious defects in hyphal growth, polarity, fungal development and cell wall integrity as well as reduced virulence in planta. In contrast, lipid droplet accumulation was significantly increased in these two mutants. Phosphorylation of FgCot1 at two highly conserved residues (S462 and T630) as well as five new sites synergistically contributed its role in various cellular processes. In addition, non-synonymous mutations in two MAPK (mitogen-activated protein kinase) proteins, FgSte11 and FgGpmk1, partially rescued the growth defect of ΔFgmob2, indicating a functional link between the FgCot1-Mob2 complex and the FgGpmk1 signalling pathway in regulating filamentous fungal growth. These results indicated that the FgCot1-Mob2 complex is critical for polarity, fungal development, cell wall organization, lipid metabolism and virulence in F. graminearum.


Assuntos
Fusarium , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fusarium/genética , Fusarium/metabolismo , Metabolismo dos Lipídeos , Doenças das Plantas , Virulência
3.
Microbiome ; 9(1): 131, 2021 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-34092253

RESUMO

BACKGROUND: Microbiome interactions are important determinants for ecosystem functioning, stability, and health. In previous studies, it was often observed that bacteria suppress potentially pathogenic fungal species that are part of the same plant microbiota; however, the underlying microbe-microbe interplay remains mostly elusive. Here, we explored antagonistic interactions of the fungus Fusarium graminearum and bacterium Streptomyces hygroscopicus at the molecular level. Both are ubiquitous members of the healthy wheat microbiota; under dysbiosis, the fungus causes devastating diseases. RESULTS: In co-cultures, we found that Streptomyces alters the fungal acetylome leading to substantial induction of fungal autophagy. The bacterium secrets rapamycin to inactivate the target of rapamycin (TOR), which subsequently promotes the degradation of the fungal histone acetyltransferase Gcn5 through the 26S proteasome. Gcn5 negatively regulates fungal autophagy by acetylating the autophagy-related protein Atg8 at the lysine site K13 and blocking cellular relocalization of Atg8. Thus, degradation of Gcn5 triggered by rapamycin was found to reduce Atg8 acetylation, resulting in autophagy induction in F. graminearum. CONCLUSIONS: Autophagy homeostasis plays an essential role in fungal growth and competition, as well as for virulence. Our work reveals a novel post-translational regulation of autophagy initiated by a bacterial antibiotic. Rapamycin was shown to be a powerful modulator of bacteria-fungi interactions with potential importance in explaining microbial homeostasis in healthy plant microbiomes. The autophagic process provides novel possibilities and targets to biologically control pathogens. Video abstract.


Assuntos
Fungos , Microbiota , Autofagia , Fusarium , Streptomyces
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...