Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NPJ Parkinsons Dis ; 10(1): 111, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834646

RESUMO

A new Parkinson's disease (PD) subtyping model has been recently proposed based on the initial location of α-synuclein inclusions, which divides PD patients into the brain-first subtype and the body-first subtype. Premotor RBD has proven to be a predictive marker of the body-first subtype. We found compared to PD patients without possible RBD (PDpRBD-, representing the brain-first subtype), PD patients with possible premotor RBD (PDpRBD+, representing the body-first subtype) had lower Movement Disorders Society Unified Parkinson's Disease Rating Scale part III (MDS UPDRS-III) score (p = 0.022) at baseline but presented a faster progression rate (p = 0.009) in MDS UPDRS-III score longitudinally. The above finding indicates the body-first subtype exhibited a faster disease progression in motor impairments compared to the brain-first subtype and further validates the proposed subtyping model.

2.
Int J Biol Macromol ; 256(Pt 1): 128270, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38000586

RESUMO

Sirtuins (SIRT1-SIRT7), as a family of NAD+-dependent protein modifying enzymes, have various catalytic functions, such as deacetylases, dealkalylases, and deribonucleases. The Sirtuins family is directly or indirectly involved in pathophysiological processes such as glucolipid metabolism, oxidative stress, DNA repair and inflammatory response through various pathways and assumes an important role in several cardiovascular diseases such as atherosclerosis, myocardial infarction, hypertension and heart failure. A growing number of studies supports that metabolic and bioenergetic reprogramming directs the sequential process of inflammation. Failure of homeostatic restoration leads to many inflammatory diseases, and that macrophages are the central cells involving the inflammatory response and are the main source of inflammatory cytokines. Regulation of cellular metabolism has emerged as a fundamental process controlling macrophage function, but its exact signaling mechanisms remain to be revealed. Understanding the precise molecular basis of metabolic control of macrophage inflammatory processes may provide new approaches for targeting immune metabolism and inflammation. Here, we provide an update of studies in cardiovascular disease on the function and role of sirtuins in macrophage inflammation and metabolism, as well as drug candidates that may interfere with sirtuins, pointing to future prospects in this field.


Assuntos
Doenças Cardiovasculares , Sirtuínas , Humanos , Sirtuínas/genética , Doenças Cardiovasculares/genética , Estresse Oxidativo/genética , Macrófagos/metabolismo , Inflamação/metabolismo
3.
Int Immunopharmacol ; 124(Pt A): 110854, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37657246

RESUMO

Articular cartilage degeneration is a characteristic pathological change of osteoarthritis (OA). Pachymic acid (PA) is an active ingredient found in Poria cocos. Previous studies have shown that PA has anti-inflammatory effects on a variety of diseases. However, the role of PA in OA and its underlying mechanisms has not been clearly elucidated. In this study, we investigated potential protective effect of PA on OA through cell experiments in vitro and animal experiments in vivo. PA inhibited interleukin-1ß-induced inflammatory mediator production in chondrocytes, which includes nitric oxide, inducible nitric oxide synthase, prostaglandin E2, cyclooxygenase-2, tumor necrosis factor alpha and interleukin-6. Meanwhile, PA also reversed the up-regulation of matrix metalloproteinase-3 and thrombospondin motifs 5, and the down-regulation of collagen type II and aggrecan in IL-1ß-treated chondrocytes. Mechanistically, our findings revealed that PA-mediated overexpression of SIRT6 inhibited the NF-κB signaling pathway. In vivo, PA contributes to improve cartilage damage in the mouse OA model. In summary, PA inhibited IL-1ß-induced inflammation and extracellular matrix degeneration by promoting SIRT6 expression and inhibiting the NF-κB signaling pathway, which indicates that PA is beneficial for the treatment of OA.


Assuntos
Osteoartrite , Sirtuínas , Animais , Camundongos , Condrócitos , Ciclo-Oxigenase 2/metabolismo , Modelos Animais de Doenças , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Interleucina-1beta/metabolismo , NF-kappa B/metabolismo , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Sirtuínas/metabolismo
4.
Phytomedicine ; 118: 154931, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37364421

RESUMO

BACKGROUND: Diabetic foot (DF) is one of the serious complications of diabetes and lacks of therapeutic drugs. Abnormal and chronic inflammation promoting foot infection and wound healing delay are the main pathogenesis of DF. The traditional prescription San Huang Xiao Yan Recipe (SHXY) has been used in the clinical treatment of DF for several decades as approved hospital experience prescription and showed remarkable therapeutic effect, but the mechanisms by which SHXY treats DF are still unclear. PURPOSE: Objectives of this study were to investigate SHXY anti-inflammatory effect on DF and explore the molecular mechanism for SHXY. METHODS: We detected the effects of SHXY on DF in C57 mouse and SD rat DF models. Animal blood glucose, weight and wound area were detected every week. Serum inflammatory factors were detected by ELISA. H&E and Masson's trichrome were used to observe tissue pathology. Single-cell sequencing data reanalysis revealed the role of M1 macrophages in DF. Venn analysis showed the co-target genes between DF M1 macrophages and compound-disease network pharmacology. Western blotting was used to explored target protein expression. Meanwhile, RAW264.7 cells were treated with drug-containing serum of SHXY to further unravel the roles of target proteins during high glucose-induced inflammation in vitro. The Nrf2 inhibitor ML385 was used on RAW 264.7 cells to further explore the relationship between Nrf2, AMPK and HMGB1. The main components of SHXY were analysed by HPLC. Finally, the treatment effect of SHXY on DF were detected on rat DF model. RESULTS: In vivo, SHXY can ameliorate inflammatory, accelerate wound healing and upregulate expression of Nrf2, AMPK and downregulate of HMGB1. Bioinformatic analysis showed that M1 macrophages were the main inflammatory cell population in DF. Moreover, the Nrf2 downstream proteins HO-1 and HMGB1 were potential DF therapeutic targets for SHXY. In vitro, we also found that SHXY increased AMPK and Nrf2 protein levels and downregulated HMGB1 expression in RAW264.7 cells. Inhibiting the expression of Nrf2 impaired the inhibition effect of SHXY on HMGB1. SHXY promoted Nrf2 translocation into the nucleus and increased the phosphorylation of Nrf2. SHXY also inhibited HMGB1 extracelluar release under high glucose. In rat DF models, SHXY also exhibited significant anti-inflammatory effect. CONCLUSION: The SHXY activated AMPK/Nrf2 pathway to suppress abnormal inflammation on DF via inhibiting HMGB1 expression. These findings provide novel insight into the mechanisms by which SHXY treats DF.


Assuntos
Diabetes Mellitus , Pé Diabético , Proteína HMGB1 , Ratos , Camundongos , Animais , Proteínas Quinases Ativadas por AMP/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Proteína HMGB1/metabolismo , Ratos Sprague-Dawley , Inflamação/tratamento farmacológico , Anti-Inflamatórios/uso terapêutico , Glucose/metabolismo , Lipopolissacarídeos/farmacologia , Diabetes Mellitus/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...