Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ChemSusChem ; : e202401025, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38984900

RESUMO

The rampant exploitation of fossil fuels has led to the significant energy scarcity and environmental disruption, affecting the sound momentum of development and progress of human civilization. To build a closed-loop anthropogenic carbon cycle, development of biofuels employing sustainable biomass feedstocks stands at the forefront of advancing carbon neutrality, yet its widespread adoption is mainly hampered by the high production costs. Montmorillonite, however, has garnered considerable attention serving as an efficient heterogeneous catalyst of ideal economic feasibility for biofuel production, primarily due to its affordability, accessibility, stability, and excellent plasticity. Up to now, nevertheless, it has merely received finite concerns and interests in production of various biofuels using montmorillonite-based catalysts. There is no timely and comprehensive review that addresses this latest relevant progress. This review fills the gap by providing a systematically review and summary in controllable synthesis, performance enhancement, and applications related to different kinds of biofuels including biodiesel, biohydrogenated diesel, levulinate, γ-valerolactone, 5-ethoxymethylfurfural, gaseous biofuels (CO, H2), and cycloalkane, by using montmorillonite catalysts and its modified forms. Particularly, this review critically depicts the design strategies for montmorillonite, illustrates the relevant reaction mechanisms, and assesses their economic viability, realizing sustainable biofuels production via efficient biomass valorization.

2.
Heliyon ; 9(11): e21811, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38027598

RESUMO

Energy and resource intensive mechanical and chemical pretreatment along with the use of hazardous chemicals are major bottlenecks in widespread lignocellulosic biomass utilization. Herein, the study investigated different pretreatment methods on spruce wood namely supercritical CO2 (scCO2) pretreatment, ultrasound-assisted alkaline pretreatment, and acetosolv pulping-alkaline hydrogen peroxide bleaching, to enhance the enzymatic digestibility of wood using optimized enzyme cocktail. Also, the effect of scCO2 pretreatment on enzyme cocktail was investigated after optimizing the concentration and temperature of cellulolytic enzymes. The impact of scCO2 and ultrasound-assisted alkaline pretreatments of wood were insignificant for the enzymatic digestibility, and acetosolv pulping-alkaline hydrogen peroxide bleaching was the most effective pretreatment that showed the release of total reducing sugar yield (TRS) of ∼95.0 wt% of total hydrolyzable sugars (THS) in enzymatic hydrolysis. The optimized enzyme cocktail showed higher yield than individual enzymes with degree of synergism 1.34 among the enzymes, and scCO2 pretreatment of cocktail for 0.5-1.0 h at 10.0-22.0 MPa and 38.0-54.0 °C had insignificant effect on the enzyme's primary and global secondary structure of cocktail and its activity.

3.
3 Biotech ; 13(7): 233, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37323858

RESUMO

Lignocellulosic biomass resource has been widely used as a natural resource for the synthesis of biofuels and bio-based products through pre-treatment, saccharification and fermentation processes. In this review, we delve into the environmental implications of bioethanol production from the widely utilized lignocellulosic biomass resource. The focus of our study is the critical stage of pre-treatment in the synthesis process, which also includes saccharification and fermentation. By collecting scientific data from the available literature, we conducted a comprehensive life cycle analysis. Our findings revealed substantial differences in the environmental burdens associated with diverse pre-treatment methods used for lignocellulosic biomass. These results highlight the importance of selecting environmentally benign pre-treatment techniques to promote the sustainability of bioethanol production. Future research directions are suggested, emphasizing the optimization of pre-treatment processes to further mitigate their environmental impact.

4.
J Hazard Mater ; 453: 131339, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37058938

RESUMO

Strict bans on specific risk materials (SRMs) are in place to prevent the spread of bovine spongiform encephalopathy (BSE). SRMs are characterized as tissues in cattle where misfolded proteins, the potential source of BSE infection, are concentrated. As a result of these bans, SRMs must be strictly isolated and disposed of, resulting in great costs for rendering companies. The increasing yield and the landfill of SRMs also exacerbated the burden on the environment. To cope with the emergence of SRMs, novel disposal methods and feasible value-added conversion routes are needed. The focus of this review is on the valorization progress achieved in the conversion of peptides derived from SRMs via an alternative disposal method, thermal hydrolysis. Promising value-added conversion of SRM-derived peptides into tackifiers, wood adhesives, flocculants, and bioplastics, is introduced. The potential conjugation strategies that can be adapted to SRM-derived peptides for desired properties are also critically reviewed. The purpose of this review is to discover a technical platform through which other hazardous proteinaceous waste, SRMs, can be treated as a high-demand feedstock for the production of renewable materials.


Assuntos
Encefalopatia Espongiforme Bovina , Animais , Bovinos , Encefalopatia Espongiforme Bovina/prevenção & controle , Proteínas
5.
Microb Physiol ; 33(1): 36-48, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36944321

RESUMO

Soil bacteria participate in self-immobilization processes for survival, persistence, and production of virulence factors in some niches or hosts through their capacities for autoaggregation, cell surface hydrophobicity, biofilm formation, and antibiotic and heavy metal resistance. This study investigated potential virulence, antibiotic and heavy metal resistance, solvent adhesion, and biofilm-forming capabilities of six cellulolytic bacteria isolated from soil samples: Paenarthrobacter sp. MKAL1, Hymenobacter sp. MKAL2, Mycobacterium sp. MKAL3, Stenotrophomonas sp. MKAL4, Chryseobacterium sp. MKAL5, and Bacillus sp. MKAL6. Strains were subjected to phenotypic methods, including heavy metal and antibiotic susceptibility and virulence factors (protease, lipase, capsule production, autoaggregation, hydrophobicity, and biofilm formation). The effect of ciprofloxacin was also investigated on bacterial susceptibility over time, cell membrane, and biofilm formation. Strains MKAL2, MKAL5, and MKAL6 exhibited protease and lipase activities, while only MKAL6 produced capsules. All strains were capable of aggregating, forming biofilm, and adhering to solvents. Strains tolerated high amounts of chromium, lead, zinc, nickel, and manganese and were resistant to lincomycin. Ciprofloxacin exhibited bactericidal activity against these strains. Although the phenotypic evaluation of virulence factors of bacteria can indicate their pathogenic nature, an in-depth genetic study of virulence, antibiotic and heavy metal resistance genes is required.


Assuntos
Antibacterianos , Metais Pesados , Virulência , Antibacterianos/farmacologia , Solo , Metais Pesados/toxicidade , Metais Pesados/análise , Metais Pesados/metabolismo , Bactérias/genética , Biofilmes , Fatores de Virulência/genética , Fatores de Virulência/farmacologia , Ciprofloxacina/farmacologia , Peptídeo Hidrolases/farmacologia , Lipase/farmacologia
6.
Waste Manag ; 160: 156-164, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36827884

RESUMO

Realization of low temperature and high efficiency oxidation of CaSO3 is the key to solve the issue of ecological hazards caused by semi-dry sintering flue gas desulfurization ash. The subcritical hydrothermal technology was employed for the oxidation of CaSO3, achieving 89.83% of CaSO3 at 180 °C, 2 MPa for 120 min with a solid-to-liquid ratio of 1:20. The macroscopic oxidation kinetics of CaSO3 in the subcritical hydrothermal reaction system was investigated. A mathematical model was established, incorporating the intrinsic reaction, CaSO3 dissolution, oxygen diffusion and CaSO4 precipitation. It was concluded that the macroscopic oxidation of CaSO3 was co-controlled by the oxygen diffusion and CaSO4 precipitation. Subcritical hydrothermal technology promises not only higher efficiency, but more importantly, potentially "one-step" preparation of CaSO4 whiskers, enabling cost-effective and high value-added resource utilization of the semi-dry FGD ash.


Assuntos
Temperatura Baixa , Ferro , Cinética , Oxirredução , Oxigênio
7.
Environ Technol ; : 1-17, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36749305

RESUMO

Delignified porous wood samples were used as carriers for biofilm formation of a bacterial consortium with the ability to degrade 1,4-dioxane (DX). The delignification treatment of the natural wood resulted in higher porosity, formation of macropores, increase in surface roughness and hydrophilicity of the treated wood pieces. These superior properties of two types of treated carriers (respectively, A and B) compared to the untreated wood resulted in 2.19 ± 0.52- and 2.66 ± 0.23-fold higher growth of biofilm. Moreover, analysis of the fatty acid profiles indicated an increase in proportion of the saturated fatty acids during the biofilm formation, characterising an enhancement in rigidity and hydrophobicity of the biofilms. DX initial concentration of 100 mg/L was completely degraded (detection limit 0.01 mg/L) in 24 and 32 h using the treated A and B woods, while only 25.84 ± 5.95% was removed after 32 h using the untreated wood. However, fitting the DX biodegradation data to the Monod model showed a lower maximum specific growth rate for biofilm (0.0276 ± 0.0018 1/h) versus planktonic (0.0382 ± 0.0024 1/h), because of gradual accumulation of inactive cells in the biofilm. Findings of this study can contribute to the knowledge of biofilm formation regarding the physical/chemical properties of biofilm carriers and be helpful to the ongoing research on bioremediation of DX.

8.
Int J Biol Macromol ; 221: 426-434, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36084872

RESUMO

The cellulose nanocrystals (CNCs) were produced from spruce wood using less hazardous and toxic reagents with understanding of influence of process parameters on CNCs properties. This study employed acetosolv pulping followed by alkaline-peroxide bleaching, eliminating highly reactive chemicals such as Na-chlorites and Na-sulfite for cellulose pulp extraction from spruce wood. Cellulose pulp yield of 41.5 ± 0.7 wt% of dry wood was obtained from pulping followed by bleaching treatment. Cellulose pulp was hydrolyzed with 59.0-65.0 wt% sulfuric acid followed by ultrasonic treatment to produce CNCs. CNCs yield of 8.0 ± 3.2 wt% of dry wood was obtained at 65 wt% acid concentration and yield of 25.1 ± 0.7 wt% at 62 wt% acid concentration. The optimization of acid hydrolysis and ultrasonic treatment resulted in CNCs with high aspect ratios (length/width) up to 48.1. It was demonstrated that higher acid concentration requires lower intensity of ultrasonic treatment for CNCs dispersion, and that higher intensity could enhance aspect ratio without impacting the crystallinity index. However, ultrasonic treatment for longer than 5 min led to destruction of the whisker morphology of CNCs. The extracted CNCs possess high crystallinity index of 80.8 ± 1.7 %, low residual hemicellulose (<2.0 %) and lignin (<0.7 %), and high-char content of 26.7 wt% from thermal degradation.


Assuntos
Nanopartículas , Picea , Celulose/química , Madeira/química , Hidrólise , Lignina/análise , Nanopartículas/química
9.
Molecules ; 27(15)2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35956924

RESUMO

Matrine is a traditional botanical pesticide with a broad-spectrum biological activity that is widely applied in agriculture. Halopyrazole groups are successfully introduced to the C13 of matrine to synthesize eight new derivatives with a yield of 78-87%. The insecticidal activity results show that the introduction of halopyrazole groups can significantly improve the insecticidal activity of matrine on Plutella xylostella, Mythimna separata and Spodoptera frugiperda with a corrected mortality rate of 100%, which is 25-65% higher than matrine. The fungicidal activity results indicate that derivatives have a high inhibitory effect on Ceratobasidium cornigerum, Cibberella sanbinetti, Gibberrlla zeae and Collectot tichum gloeosporioides. Thereinto, 4-Cl-Pyr-Mat has the best result, with an inhibition rate of 23-33% higher than that of matrine. Therefore, the introduction of halogenated pyrazole groups can improve the agricultural activity of matrine.


Assuntos
Inseticidas , Mariposas , Alcaloides , Animais , Inseticidas/farmacologia , Estrutura Molecular , Quinolizinas/farmacologia , Relação Estrutura-Atividade , Matrinas
10.
ACS Omega ; 7(32): 27851-27863, 2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35990502

RESUMO

The effect of interphase properties on the crystallization behavior of blends of poly(lactic acid) (PLA)/acetylated starch (AS) with different degrees of substitution (DSs) was investigated. Under isothermal crystallization conditions, the rate of crystallization was higher for PLA/DS0.5 and lower for PLA/DS1.5 and PLA/DS2.5 when compared to PLA. In contrast, non-isothermal crystallization behavior indicated a slower rate of crystallization of PLA/DS0.5 and a faster rate of crystallization of PLA/DS1.5 and PLA/DS2.5 compared to PLA at the highest cooling rate (5 °C/min). The potential relationship between crystallization behavior and interphase properties and interphase thickness and formation of rigid amorphous fraction in the interphase, was investigated. The formation of a rigid amorphous fraction in PLA/DS1.5 and a thick interphase in PLA/DS2.5 prevented the formation of crystals on the dispersed phase and interrupted the crystallization under isothermal conditions. Hydrogen bonding in the PLA/DS1.5 blend and hydrophobic interactions in the PLA/DS2.5 blend may facilitate the crystallization at high cooling rates under non-isothermal conditions. Small-angle X-ray scattering analysis revealed the presence of a smaller lamellar structure in PLA/AS blends. The largest amorphous phase among blends was observed for the PLA/DS1.5 blend, which can be attributed to the hydrogen bonding in the interphase region of this blend.

11.
Chemosphere ; 307(Pt 4): 136090, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35995182

RESUMO

Carbonyl sulfide (COS), a poisonous and harmful gas, is found in industrial gas products from various coal-firing processes. The emission of COS into the atmosphere contributes to aerosol particles that affect the global climate, posing a risk to climate change and population health. In recent years, the total amount of anthropogenic COS emissions has increased significantly, resulting in the prominent COS pollution problem and becoming a vital environmental issue. This review summarizes the research progress of removing COS from industrial gases. According to the characteristics of different industrial gas products, the COS removal mechanism and influence factors, as well as the advantages and disadvantages for various methods, are discussed, including oxidation, absorption/adsorption, hydrogenation, and hydrolysis. Although COS emission control technologies have attracted widespread attention, the progress of application in blast furnace gas purification has been extremely slow, insufficient and sporadic. To fill the gap, this work provides a timely review on blast furnace gas characteristics and application process of various methods for removing COS from blast furnace gas with varying compositions, and their challenges and future development. This work aims to provide guidance on how effective processes and techniques for removal of COS from blast furnace gas can be developed. This review emphasizes the desirability of direct COS removal from blast furnace gas compared to expensive terminal desulfurization technologies. Furthermore, the development of a new process for low-temperature COS removal from blast furnace gas based on a dual-functional catalyst of hydrolysis/adsorption is advocated.


Assuntos
Carvão Mineral , Óxidos de Enxofre , Gases , Enxofre
12.
Appl Biochem Biotechnol ; 194(11): 5060-5082, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35687308

RESUMO

The characterization of bacteria with hydrolytic potential significantly contributes to the industries. Six cellulose-degrading bacteria were isolated from mixture soil samples collected at Kingfisher Lake and the University of Manitoba campus by Congo red method using carboxymethyl cellulose agar medium and identified as Paenarthrobacter sp. MKAL1, Hymenobacter sp. MKAL2, Mycobacterium sp. MKAL3, Stenotrophomonas sp. MKAL4, Chryseobacterium sp. MKAL5, and Bacillus sp. MKAL6. Their cellulase production was optimized by controlling different environmental and nutritional factors such as pH, temperature, incubation period, substrate concentration, nitrogen, and carbon sources using the dinitrosalicylic acid and response surface methods. Except for Paenarthrobacter sp. MKAL1, all strains are motile. Only Bacillus sp. MKAL6 was non-salt-tolerant and showed gelatinase activity. Sucrose enhanced higher cellulase activity of 78.87 ± 4.71 to 190.30 ± 6.42 U/mL in these strains at their optimum pH (5-6) and temperature (35-40 °C). The molecular weights of these cellulases were about 25 kDa. These bacterial strains could be promising biocatalysts for converting cellulose into glucose for industrial purposes.


Assuntos
Bacillus , Celulase , Celulases , Celulase/química , Celulose , Solo , Carboximetilcelulose Sódica , Ágar , Vermelho Congo , Nitrogênio , Temperatura , Carbono , Glucose , Sacarose , Gelatinases , Concentração de Íons de Hidrogênio
14.
Molecules ; 26(22)2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34833854

RESUMO

To investigate the effects of lignin methylolation and lignin adding stage on the resulted lignin-based phenolic adhesives, Alcell lignin activated with NaOH (AL) or methylolation (ML) was integrated into the phenolic adhesives system by replacing phenol at various adhesive synthesis stages or directly co-polymerizing with phenolic adhesives. Lignin integration into phenolic adhesives greatly increased the viscosity of the resultant adhesives, regardless of lignin methylolation or adding stage. ML introduction at the second stage of adhesive synthesis led to much bigger viscosity than ML or AL introduction into phenolic adhesives at any other stages. Lignin methylolation and lignin adding stage did not affect the thermal stability of lignin based phenolic adhesives, even though lignin-based adhesives were less thermally stable than NPF. Typical three-stage degradation characteristics were also observed on all the lignin-based phenolic adhesives. Three-ply plywoods can be successfully laminated with lignin based adhesives, and it was interesting that after 3 h of cooking in boiling water, the plywoods specimens bonded with lignin-based phenolic adhesives displayed higher bonding strength than the corresponding dry strength obtained after direct conditioning at 20 °C and 65% RH. Compared with NPF, lignin introduction significantly reduced the bonding strength of lignin based phenolic adhesives when applied for plywood lamination. However, no significant variation of bonding strength was detected among the lignin based phenolic adhesives, regardless of lignin methylolation or adding stages.


Assuntos
Adesivos/química , Lignina/química , Fenóis/química , Polimerização , Viscosidade
15.
Chem Commun (Camb) ; 56(71): 10357-10360, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32760984

RESUMO

Methacrylated lignin was reacted with PH3(g) to prepare a phosphorus rich bio-based polymer containing PH/PH2 functional groups, which were converted to tertiary phosphine units via the phosphane-ene reaction. This represents a straightforward method for the upconversion of low-value biomass waste to useful inorganic polymer with potential utility in metal scavenging applications.


Assuntos
Lignina/química , Metais/química , Fosfinas/química , Biomassa
16.
ACS Omega ; 5(25): 15390-15401, 2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32637813

RESUMO

In this article, supercritical water gasification of biocrude at different conditions was performed and compared to each other. Three scenarios were considered while treating biocrude originating from cattle manure (CM) and corn husk (CH), namely, uncatalyzed feedstock, catalyzed with 10% Ni-0.08% Ru/Al2O3 and finally catalyzed with 10% Ni-0.08% Ru/Al2O3-ZrO2. It was found that 10% Ni-0.08% Ru/Al2O3-ZrO2 has performed significantly better than the other two scenarios over the 5 hour run time with a 193 and 187% higher hydrogen yield compared to the uncatalyzed and 10% Ni-0.08% Ru/Al2O3 catalyzed scenarios, respectively. Compared to CM gasification in the presence of a 10% Ni-0.08% Ru/Al2O3-ZrO2 catalyst, the catalyst got deactivated because of the high phenol and furan content in the corn husk biocrude, therefore hydrogen yield performance fell significantly. It was observed that the carbon gasification efficiency of the biocrude was independent of temperature. In terms of carbon conversion, the equilibrium conditions for the biocrude considered were attained at lower temperature. A mechanistic model based on the Eley-Rideal method was devised and tested against the obtained data. The dissociation of adsorbed oxygenated hydrocarbon is found to be the rate-determining step with an average absolute deviation of 3.55%.

17.
Molecules ; 25(10)2020 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-32429419

RESUMO

The present study demonstrated a sustainable and cost-effective approach to depolymerize/oxidize softwood (SW) and hardwood (HW) kraft lignins using concentrated hydrogen peroxide at temperatures ranging from 25 to 35 °C, in the absence of catalysts or organic solvents. The degree of lignin depolymerization could be simply controlled by reaction time, and no further separation process was needed at the completion of the treatment. The obtained depolymerized lignin products were comprehensively characterized by GPC-UV, FTIR, 31P-NMR, TGA, Py-GC/MS and elemental analysis. The weight-average molecular weights (Mw) of the depolymerized lignins obtained from SW or HW lignin at a lignin/H2O2 mass ratio of 1:1 after treatment for 120 h at room temperature (≈25 °C) were approximately 1420 Da. The contents of carboxylic acid groups in the obtained depolymerized lignins were found to significantly increase compared with those of the untreated raw lignins. Moreover, the depolymerized lignin products had lower thermal decomposition temperatures than those of the raw lignins, as expected, owing to the greatly reduced Mw. These findings represent a novel solution to lignin depolymerization for the production of chemicals that can be utilized as a bio-substitute for petroleum-based polyols in polyurethane production.


Assuntos
Peróxido de Hidrogênio/química , Lignina/química , Poliuretanos/síntese química , Madeira/química , Humanos , Hidrólise , Peso Molecular , Oxirredução , Temperatura
18.
Environ Sci Pollut Res Int ; 27(13): 15785-15797, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32088818

RESUMO

In this study, the adsorption of roxarsone (ROX) onto corncob-derived activated carbon (AC) was optimized using response surface methodology (RSM). Following this, the AC was comprehensively characterized by FT-IR, SEM, and EDS analysis. The results showed that the highest ROX adsorption efficiency of 304.34 mg/g was obtained at the contact time of 262 min, initial pH of 2.5, adsorbent dosage of 0.4 g/L, and initial concentration of 240 mg/L. Besides, it was found that the adsorption equilibrium data was fitted well to the Langmuir and Sips isotherm models. The thermodynamic parameters (e.g., ΔG, ΔH, and ΔS) revealed the spontaneous and exothermic nature of ROX adsorption. As indicated by pseudo second-order kinetics model, the adsorption of ROX onto AC could be achieved through the hydrogen bond, π-π adsorbate-adsorbent interaction, and electrostatic interaction between AC surface functional group and molecular species variations of ROX at different pH values. Overall, it can be concluded that corncob-derived AC is an alternative option for removing ROX from aqueous solution.


Assuntos
Roxarsona , Poluentes Químicos da Água/análise , Adsorção , Carvão Vegetal , Concentração de Íons de Hidrogênio , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Termodinâmica , Zea mays
19.
Carbohydr Polym ; 229: 115453, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31826416

RESUMO

This study investigated the acetylation of starch to improve its processability and compatibility with poly(lactic acid). The temperature at the maximum rate of degradation increased by 3.2% for poly(lactic acid) blends containing acetylated starch degree of substitution 2.5 compared to the blend containing neat starch. A biphasic morphology with distinct dispersed phase was predicted and observed experimentally for all blends except the blend containing acetylated starch degree of substitution 3. Acetylated starch induced plasticization and nucleation for all degree of substitution. The blend containing acetylated starch degree of substitution 2.5 had higher tensile strength (26%), and toughness (29%) compared to the blend containing neat starch. The superior mechanical properties of the blend containing acetylated starch degree of substitution 2.5 are attractive for medical implant applications. The continuous microstructure and transparency characteristics of the blend containing acetylated starch degree of substitution 3 are attractive for packaging applications.

20.
Chemosphere ; 214: 511-518, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30286420

RESUMO

In this study, activated petroleum coke (APC) and commercial activated carbon (CAC) were used in a continuous adsorption column for removal of model naphthenic acids and organics from real oil sands process-affected water (OSPW). Diphenylacetic acid and 2-naphthoic acid, two model naphthenic acid (NA) compounds, were removed completely by the APC in a continuous column operation. Due to the complex nature of organics in OSPW, total organic carbon (TOC) was measured to determine the effectiveness of OSPW treatment by APC. The removal of TOC from OSPW at its natural pH 8 by APC was only 25%, whereas acidification at pH 4 followed by APC adsorption removed 96% of the initial TOC. When compared to a commercial activated carbon, the APC showed an average of 20% higher organics removal. The experimental breakthrough curves were better fitted by Thomas model in comparison to Adams-Bohart and Yoon-Nelson models. The regeneration of APC was conducted using methanol with 0.01 wt% NaOH (pH = 11.7) and a total of four cycles of adsorption and regeneration were conducted with marginal loss of adsorption sites.


Assuntos
Carbono/química , Ácidos Carboxílicos/isolamento & purificação , Campos de Petróleo e Gás/química , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Adsorção , Ácidos Carboxílicos/metabolismo , Poluentes Químicos da Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...