Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hepatol Int ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38833138

RESUMO

BACKGROUND: To provide patients the chance of accepting curative transjugular intrahepatic portosystemic shunt (TIPS) rather than palliative treatments for portal hypertension-related variceal bleeding and ascites, we aimed to assess hepatic-associated vascular morphological change to improve the predictive accuracy of overt hepatic encephalopathy (HE) risks. METHODS: In this multicenter study, 621 patients undergoing TIPS were subdivided into training (413 cases from 3 hospitals) and external validation datasets (208 cases from another 3 hospitals). In addition to traditional clinical factors, we assessed hepatic-associated vascular morphological changes using maximum diameter (including absolute and ratio values). Three predictive models (clinical, hepatic-associated vascular, and combined) were constructed using logistic regression. Their discrimination and calibration were compared to test the necessity of hepatic-associated vascular assessment and identify the optimal model. Furthermore, to verify the improved performance of ModelC-V, we compared it with four previous models, both in discrimination and calibration. RESULTS: The combined model outperformed the clinical and hepatic-associated vascular models (training: 0.814, 0.754, 0.727; validation: 0.781, 0.679, 0.776; p < 0.050) and had the best calibration. Compared to previous models, ModelC-V showed superior performance in discrimination. The high-, middle-, and low-risk populations displayed significantly different overt HE incidence (p < 0.001). Despite the limited ability of pre-TIPS ammonia to predict overt HE risks, the combined model displayed a satisfactory ability to predict overt HE risks, both in the low- and high-ammonia subgroups. CONCLUSION: Hepatic-associated vascular assessment improved the predictive accuracy of overt HE, ensuring curative chances by TIPS for suitable patients and providing insights for cirrhosis-related studies.

2.
Environ Sci Pollut Res Int ; 28(28): 38034-38042, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33725307

RESUMO

Greenhouse gas (GHG) emissions from aquaculture have gained widespread attention. However, the effect of phosphorus (P) and potassium (K) on GHG emissions from aquaculture systems has rarely been studied. In this study, we conducted a laboratory-scale experiment to investigate the effect of P and K addition on CH4 and N2O emissions and nutrient use efficiency in a rice-fish co-culture system. The results showed that the CH4 flux rate did not differ between the rice-fish co-culture (RF) and fish monoculture (F) systems. Phosphorus addition did not affect CH4 emission from the RF. In contrast, K addition significantly increased the CH4 emission from the RF by 148.4%. Dual P and K addition greatly increased the CH4 emission from the RF by six times, indicating an interactive effect of P and K on the stimulation of CH4 emission. Phosphorus addition strengthened the restorative effect of the RF on N2O emission, while K addition weakened the restorative effect of the RF on N2O emission. The combination of P and K did not affect the N2O emission from the RF. The application of P and K strengthened the restorative effect of rice on nitrogen (N) pollution in aquaculture water. Phosphorus and K addition significantly increased the rice biomass and nutrient in the harvested rice, but did not affect the fish biomass and nutrient in the harvested fish. Dual P and K addition increased the nutrient use efficiency in the rice-fish system. These results provide a reference for adjusting nutrient management to reduce GHG emissions and improve nutrient use efficiency in the rice-fish system.


Assuntos
Gases de Efeito Estufa , Oryza , Agricultura , Animais , Técnicas de Cocultura , Efeito Estufa , Gases de Efeito Estufa/análise , Metano/análise , Óxido Nitroso/análise , Nutrientes , Fósforo , Potássio , Solo
3.
Sci Total Environ ; 655: 284-291, 2019 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-30471596

RESUMO

How to reduce the gaseous nitrogen (N) pollution (N2O and NH3) of intensive aquaculture ponds to atmosphere has gained increasing attention for the sustainable development of aquaculture. In this study, we constructed a new rice-fish/shrimp co-culture system in aquaculture ponds by using a specially developed high-stalk rice variety, and performed a 2-year field experiment to investigate the effect of this system on the N2O and NH3 emissions from yellow catfish and freshwater shrimp ponds. The results showed that the mean emission factors of N2O and NH3 to the total N input in feed was 0.18% and 0.89% for catfish monoculture pond, and 2.46% and 13.45% for shrimp monoculture pond, respectively. Rice-fish/shrimp co-culture not only reduced the N2O and NH3 emission from rice platform of catfish and shrimp ponds, but also mitigated the N2O and NH3 emission from the ditch without rice planted. The total amount of N2O and NH3 were respectively mitigated by 85.6% and 26.0% for catfish pond, and by 108.3% and 22.6% for shrimp pond, as compared with that of monoculture ponds. Co-culture system was more effective on the mitigation of gaseous N loss in the catfish than shrimp ponds.


Assuntos
Poluentes Atmosféricos/análise , Amônia/análise , Aquicultura/métodos , Produção Agrícola/métodos , Óxido Nitroso/análise , Animais , Peixes/crescimento & desenvolvimento , Água Doce/química , Oryza/crescimento & desenvolvimento , Palaemonidae/crescimento & desenvolvimento , Volatilização
4.
PLoS One ; 13(5): e0196703, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29782525

RESUMO

The effect of no- and reduced tillage (NT/RT) on greenhouse gas (GHG) emission was highly variable and may depend on other agronomy practices. However, how the other practices affect the effect of NT/RT on GHG emission remains elusive. Therefore, we conducted a global meta-analysis (including 49 papers with 196 comparisons) to assess the effect of five options (i.e. cropping system, crop residue management, split application of N fertilizer, irrigation, and tillage duration) on the effect of NT/RT on CH4 and N2O emissions from agricultural fields. The results showed that NT/RT significantly mitigated the overall global warming potential (GWP) of CH4 and N2O emissions by 6.6% as compared with conventional tillage (CT). Rotation cropping systems and crop straw remove facilitated no-tillage (NT) to reduce the CH4, N2O, or overall GWP both in upland and paddy field. NT significantly mitigated the overall GWP when the percentage of basal N fertilizer (PBN) >50%, when tillage duration > 10 years or rainfed in upland, while when PBN <50%, when duration between 5 and 10 years, or with continuous flooding in paddy field. RT significantly reduced the overall GWP under single crop monoculture system in upland. These results suggested that assessing the effectiveness of NT/RT on the mitigation of GHG emission should consider the interaction of NT/RT with other agronomy practices and land use type.


Assuntos
Metano/química , Óxido Nitroso/química , Agricultura/métodos , Poluentes Atmosféricos/química , Produtos Agrícolas/química , Fertilizantes/efeitos adversos , Aquecimento Global/prevenção & controle , Efeito Estufa/prevenção & controle , Solo/química , Temperatura
5.
Sci Rep ; 7(1): 138, 2017 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-28273939

RESUMO

Microbial transformation of ginsenosides to increase its pharmaceutical effect is gaining increasing attention in recent years. In this study, Cellulosimicrobium sp. TH-20, which was isolated from soil samples on which ginseng grown, exhibited effective ginsenoside-transforming activity. After protopanaxadiol (PPD)-type ginsenoside (Rb1) and protopanaxatriol (PPT)-type ginsenosides (Re and Rg1) were fed to C. sp. TH20, a total of 12 metabolites, including 6 new intermediate metabolites, were identified. Stepwise deglycosylation and dehydrogenation on the feeding precursors have been observed. The final products were confirmed to be rare ginsenosides Rd, GypXVII, Rg2 and PPT after 96 h transformation with 38-96% yields. The four products showed improved anti-inflammatory activities by using lipopolysaccharide (LPS)-induced murine RAW 264.7 macrophages and the xylene-induced acute inflammatory model of mouse ear edema. The results indicated that they could dramatically attenuate the production of TNF-α more effectively than the precursors. Our study would provide an example of a unique and powerful microbial cell factory for efficiently converting both PPD-type and PPT-type ginsenosides to rare natural products, which extends the drug candidates as novel anti-inflammatory remedies.


Assuntos
Actinobacteria/isolamento & purificação , Anti-Inflamatórios/química , Edema/tratamento farmacológico , Ginsenosídeos/química , Panax/crescimento & desenvolvimento , Actinobacteria/crescimento & desenvolvimento , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/farmacologia , Modelos Animais de Doenças , Edema/induzido quimicamente , Edema/imunologia , Ginsenosídeos/administração & dosagem , Ginsenosídeos/farmacologia , Lipopolissacarídeos/efeitos adversos , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Panax/química , Células RAW 264.7 , Microbiologia do Solo , Fator de Necrose Tumoral alfa/metabolismo , Xilenos/efeitos adversos
6.
Prep Biochem Biotechnol ; 46(4): 336-41, 2016 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-25831478

RESUMO

Ginsenoside Rd, one of the ginsenosides with significant pharmaceutical activities, is getting more and more attractions on its biotransformation. In this study, a novel fungus mutant, the Aspergillus niger strain TH-10a, which can efficiently convert ginsenoside Rd from Rb1, was obtained through screening survival library of LiCl and ultraviolet (UV) irradiation. The transformation product ginsenoside Rd, generated by removing the outer glucose residue from the position C20 of ginsenoside Rb1, was identified through high-performance liquid chromatography (HPLC) analysis. Factors for the microbial culture and biotransformation were investigated in terms of the carbon sources, the nitrogen sources, pH values, and temperatures. This showed that maximum mycelia growth could be obtained at 28°C and pH 6.0 with cellobiose and tryptone as the carbon source and the nitrogen source, respectively. The highest transformation rate (∼86%) has been achieved at 32°C and pH 5.0 with the feeding time of substrate 48 hr. Also, Aspergillus niger strain TH-10a could tolerate even 40 mg/mL ginseng root extract as substrate with 60% bioconversion rate after 72 hr of treatment at the optimal condition. Our results highlight a novel ginsenoside Rd transformation fungus and illuminate its potentially practical application in the pharmaceutical industries.


Assuntos
Aspergillus niger/metabolismo , Ginsenosídeos/metabolismo , Mutação , Aspergillus niger/genética , Cromatografia Líquida de Alta Pressão , Concentração de Íons de Hidrogênio , Filogenia , RNA Ribossômico/genética , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...