Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Burn Care Res ; 35(4): 328-36, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24043240

RESUMO

The authors have previously shown that recombinant factor XIII (rFXIII) eliminates early manifestations of multiple-organ injury caused by experimental superior mesenteric artery occlusion or trauma-hemorrhagic shock. The aim of the present study was to test the hypothesis that rFXIII provides similar protective effect in experimental burn injury. Rats were randomly divided into five groups (eight animals per group): group 1: burn + placebo treatment; group 2: burn + rFXIII pretreatment; group 3: burn + rFXIII treatment; group 4: sham burn + placebo treatment, and group 5: sham burn + rFXIII treatment. Burn (40% of TBSA) was achieved by immersing the back and abdomen of a rat into 97°C water for 10 and 5 seconds, respectively. Infusion of rFXIII (1 mg/kg) or placebo was performed immediately after burn/sham burn in treatment groups or 24 hours before burn and repeated immediately after it in pretreatment group. Endpoint parameters measured 3 hours after burn/sham burn included muscle blood flow and PO2, lung permeability, gut histology, lung and gut myeloperoxidase activity, neutrophil respiratory burst, and FXIII activity. Both treatment and pretreatment with rFXIII partially preserved microvascular blood flow in the muscle. Muscle PO2 in pretreated rats did not differ from that in shams. Pretreatment but not treatment with rFXIII preserved lung permeability. rFXIII did not have any protective effect on other endpoint parameters. In contrast to superior mesenteric artery occlusion and trauma-hemorrhagic shock experimental models, rFXIII at the doses tested has a limited effect on preventing early manifestations of multiple-organ injury after experimental burn.


Assuntos
Queimaduras/complicações , Fator XIII/farmacologia , Insuficiência de Múltiplos Órgãos/prevenção & controle , Proteínas Recombinantes/farmacologia , Traumatismo por Reperfusão/complicações , Choque Hemorrágico/complicações , Animais , Citometria de Fluxo , Íleo/metabolismo , Íleo/patologia , Pulmão/metabolismo , Masculino , Microcirculação/efeitos dos fármacos , Insuficiência de Múltiplos Órgãos/etiologia , Insuficiência de Múltiplos Órgãos/metabolismo , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/metabolismo , Neutrófilos/metabolismo , Oxigênio/metabolismo , Pressão Parcial , Permeabilidade/efeitos dos fármacos , Peroxidase/metabolismo , Distribuição Aleatória , Ratos Sprague-Dawley , Fluxo Sanguíneo Regional/efeitos dos fármacos
2.
J Trauma Acute Care Surg ; 73(2): 338-42; discussion 342, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22846937

RESUMO

BACKGROUND: Hemorrhagic shock is known to disrupt the gut barrier leading to end-organ dysfunction. The vagus nerve can inhibit detrimental immune responses that contribute to organ damage in hemorrhagic shock. Therefore, we explored whether stimulation of the vagus nerve can protect the gut and recover lung permeability in trauma-hemorrhagic shock (THS). METHODS: Male Sprague-Dawley rats were subjected to left cervical vagus nerve stimulation at 5 V for 10 minutes. The right internal jugular and femoral artery were cannulated for blood withdrawal and blood pressure monitoring, respectively. Animals were then subjected to hemorrhagic shock to a mean arterial pressure between 30 mm Hg and 35 mm Hg for 90 minutes then reperfused with their own whole blood. After observation for 3 hours, gut permeability was assessed with fluorescein dextran 4 in vivo injections in a ligated portion of distal ileum followed by Evans blue dye injection to assess lung permeability. Pulmonary myeloperoxidase levels were measured and compared. RESULTS: Vagal nerve stimulation abrogated THS-induced lung injury (mean [SD], 8.46 [0.36] vs. 4.87 [0.78]; p < 0.05) and neutrophil sequestration (19.39 [1.01] vs. 12.83 [1.16]; p < 0.05). Likewise, THS gut permeability was reduced to sham levels. CONCLUSION: Neuromodulation decreases injury in the THS model as evidenced by decreased gut permeability as well as decreased lung permeability and pulmonary neutrophil sequestration in a rat model.


Assuntos
Trato Gastrointestinal/metabolismo , Pulmão/metabolismo , Insuficiência de Múltiplos Órgãos/prevenção & controle , Choque Hemorrágico/terapia , Estimulação do Nervo Vago/métodos , Análise de Variância , Animais , Modelos Animais de Doenças , Trato Gastrointestinal/fisiopatologia , Pulmão/fisiopatologia , Masculino , Ativação de Neutrófilo , Permeabilidade , Peroxidase/metabolismo , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Medição de Risco , Choque Hemorrágico/mortalidade , Taxa de Sobrevida
3.
Shock ; 38(1): 107-14, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22575992

RESUMO

Interactions of toll-like receptors (TLRs) with nonmicrobial factors play a major role in the pathogenesis of early trauma-hemorrhagic shock (T/HS)-induced organ injury and inflammation. Thus, we tested the hypothesis that TLR4 mutant (TLR4 mut) mice would be more resistant to T/HS-induced gut injury and polymorphonuclear neutrophil (PMN) priming than their wild-type littermates and found that both were significantly reduced in the TLR4 mut mice. In addition, the in vivo and ex vivo PMN priming effect of T/HS intestinal lymph observed in the wild-type mice was abrogated in TLR4 mut mice as well the TRIF mut-deficient mice and partially attenuated in Myd88 mice, suggesting that TRIF activation played a more predominant role than MyD88 in T/HS lymph-induced PMN priming. Polymorphonuclear neutrophil depletion studies showed that T/HS lymph-induced acute lung injury was PMN dependent, because lung injury was totally abrogated in PMN-depleted animals. Because the lymph samples were sterile and devoid of endotoxin or bacterial DNA, we investigated whether the effects of T/HS lymph was related to endogenous nonmicrobial TLR4 ligands. High-mobility group box 1 protein 1, heat shock protein 70, heat shock protein 27, and hyaluronic acid all have been implicated in ischemia-reperfusion-induced tissue injury. None of these "danger" proteins appeared to be involved, because their levels were similar between the sham and shock lymph samples. In conclusion, TLR4 activation is important in T/HS-induced gut injury and in T/HS lymph-induced PMN priming and lung injury. However, the T/HS-associated effects of TLR4 on gut barrier dysfunction can be uncoupled from the T/HS lymph-associated effects of TLR4 on PMN priming.


Assuntos
Enteropatias/etiologia , Ativação de Neutrófilo/imunologia , Choque Hemorrágico/complicações , Receptor 4 Toll-Like/imunologia , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/imunologia , Animais , Enteropatias/imunologia , Enteropatias/fisiopatologia , Mucosa Intestinal/metabolismo , Ligantes , Linfa/imunologia , Masculino , Camundongos , Camundongos Knockout , Camundongos Mutantes , Permeabilidade , Ratos , Explosão Respiratória/imunologia , Choque Hemorrágico/imunologia , Choque Hemorrágico/fisiopatologia , Transdução de Sinais/fisiologia , Suínos , Porco Miniatura , Receptor 4 Toll-Like/deficiência , Receptor 4 Toll-Like/genética , Ferimentos e Lesões/complicações
4.
Anesth Analg ; 115(1): 118-21, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22584546

RESUMO

BACKGROUND: Mechanical ventilation (MV) can lead to ventilator-induced lung injury secondary to trauma and associated increases in pulmonary inflammatory cytokines. There is controversy regarding the associated systemic inflammatory response. In this report, we demonstrate the effects of MV on systemic inflammation. METHODS: This report is part of a previously published study (Hong et al. Anesth Analg 2010;110:1652-60). Female pigs were randomized into 3 groups. Group H-Vt/3 was ventilated with a tidal volume (Vt) of 15 mL/kg predicted body weight (PBW)/positive end-expiratory pressure (PEEP) of 3 cm H(2)O; group L-Vt/3 with a Vt of 6 mL/kg PBW/PEEP of 3 cm H2O; and group L-Vt/10 with a Vt of 6 mL/kg PBW/PEEP of 10 cm H(2)O, for 8 hours. Each group had 6 subjects (n = 6). Prelung and postlung sera were analyzed for inflammatory markers. Hemodynamics, airway mechanics, and arterial blood gases were monitored. RESULTS: There were no significant differences in systemic cytokines among groups. There were similar trends of serum inflammatory markers in all subjects. This is in contrast to findings previously published demonstrating increases in inflammatory mediators in bronchoalveolar lavage. CONCLUSION: Systemic inflammatory markers did not correlate with lung injury associated with MV.


Assuntos
Lesão Pulmonar Aguda/etiologia , Respiração com Pressão Positiva/efeitos adversos , Síndrome de Resposta Inflamatória Sistêmica/etiologia , Lesão Pulmonar Induzida por Ventilação Mecânica/etiologia , Lesão Pulmonar Aguda/sangue , Lesão Pulmonar Aguda/imunologia , Lesão Pulmonar Aguda/fisiopatologia , Animais , Citocinas/sangue , Feminino , Hemodinâmica , Mediadores da Inflamação/sangue , Suínos , Síndrome de Resposta Inflamatória Sistêmica/sangue , Síndrome de Resposta Inflamatória Sistêmica/imunologia , Síndrome de Resposta Inflamatória Sistêmica/fisiopatologia , Volume de Ventilação Pulmonar , Fatores de Tempo , Lesão Pulmonar Induzida por Ventilação Mecânica/sangue , Lesão Pulmonar Induzida por Ventilação Mecânica/imunologia , Lesão Pulmonar Induzida por Ventilação Mecânica/fisiopatologia
5.
J Trauma ; 71(6): 1652-8, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22182874

RESUMO

BACKGROUND: We tested the hypothesis that testosterone depletion or blockade in male rats protects against trauma hemorrhagic shock-induced distant organ injury by limiting gut injury and subsequent production of biologically active mesenteric lymph. METHODS: Male, castrated male, or flutamide-treated rats (25 mg/kg subcutaneously after resuscitation) were subjected to a laparotomy (trauma), mesenteric lymph duct cannulation, and 90 minutes of shock (35 mm Hg) or trauma sham-shock. Mesenteric lymph was collected preshock, during shock, and postshock. Gut injury was determined at 6 hours postshock using ex vivo ileal permeability with fluorescein dextran. Postshock mesenteric lymph was assayed for biological activity in vivo by injection into mice and measuring lung permeability, neutrophil activation, and red blood cell deformability. In vitro neutrophil priming capacity of the lymph was also tested. RESULTS: Castrated and flutamide-treated male rats were significantly protected against trauma hemorrhagic shock (T/HS)-induced gut injury when compared with hormonally intact males. Postshock mesenteric lymph from male rats had a higher capacity to induce lung injury, Neutrophil (PMN) activation, and loss of red blood cell deformability when injected into naïve mice when compared with castrated and flutamide-treated males. The increase in gut injury after T/HS in males directly correlated with the in vitro biological activity of mesenteric lymph to prime neutrophils for an increased respiratory burst. CONCLUSIONS: After T/HS, gut protective effects can be observed in males after testosterone blockade or depletion. This reduced gut injury contributes to decreased biological activity of mesenteric lymph leading to attenuated systemic inflammation and distant organ injury.


Assuntos
Trato Gastrointestinal/fisiopatologia , Lesão Pulmonar/fisiopatologia , Linfa/metabolismo , Choque Hemorrágico/fisiopatologia , Testosterona/deficiência , Animais , Castração/métodos , Modelos Animais de Doenças , Flutamida/farmacologia , Trato Gastrointestinal/metabolismo , Lesão Pulmonar/metabolismo , Linfa/efeitos dos fármacos , Vasos Linfáticos/metabolismo , Masculino , Ativação de Neutrófilo/efeitos dos fármacos , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Valores de Referência , Índice de Gravidade de Doença , Circulação Esplâncnica/fisiologia , Taxa de Sobrevida , Testosterona/metabolismo
6.
PLoS One ; 6(8): e14829, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21829592

RESUMO

BACKGROUND: Injurious non-microbial factors released from the stressed gut during shocked states contribute to the development of acute lung injury (ALI) and multiple organ dysfunction syndrome (MODS). Since Toll-like receptors (TLR) act as sensors of tissue injury as well as microbial invasion and TLR4 signaling occurs in both sepsis and noninfectious models of ischemia/reperfusion (I/R) injury, we hypothesized that factors in the intestinal mesenteric lymph after trauma hemorrhagic shock (T/HS) mediate gut-induced lung injury via TLR4 activation. METHODS/PRINCIPAL FINDINGS: The concept that factors in T/HS lymph exiting the gut recreates ALI is evidenced by our findings that the infusion of porcine lymph, collected from animals subjected to global T/HS injury, into naïve wildtype (WT) mice induced lung injury. Using C3H/HeJ mice that harbor a TLR4 mutation, we found that TLR4 activation was necessary for the development of T/HS porcine lymph-induced lung injury as determined by Evan's blue dye (EBD) lung permeability and myeloperoxidase (MPO) levels as well as the induction of the injurious pulmonary iNOS response. TRIF and Myd88 deficiency fully and partially attenuated T/HS lymph-induced increases in lung permeability respectively. Additional studies in TLR2 deficient mice showed that TLR2 activation was not involved in the pathology of T/HS lymph-induced lung injury. Lastly, the lymph samples were devoid of bacteria, endotoxin and bacterial DNA and passage of lymph through an endotoxin removal column did not abrogate the ability of T/HS lymph to cause lung injury in naïve mice. CONCLUSIONS/SIGNIFICANCE: Our findings suggest that non-microbial factors in the intestinal mesenteric lymph after T/HS are capable of recreating T/HS-induced lung injury via TLR4 activation.


Assuntos
Lesão Pulmonar/etiologia , Linfonodos/metabolismo , Choque Hemorrágico/complicações , Receptor 4 Toll-Like/metabolismo , Ferimentos e Lesões/complicações , Animais , Sequência de Bases , Western Blotting , Primers do DNA , Pulmão/enzimologia , Masculino , Camundongos , Óxido Nítrico Sintase Tipo II/metabolismo , Reação em Cadeia da Polimerase , Transdução de Sinais , Suínos , Porco Miniatura
7.
J Trauma ; 70(2): 489-95, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21307751

RESUMO

OBJECTIVE: To test the hypothesis that gut-derived factors carried in trauma-hemorrhagic shock (T/HS) lymph are sufficient to induce red blood cells (RBC) injury, to investigate their potential mechanisms of action, and to define the time post-T/HS that these factors appear in the lymph. METHODS: Mesenteric lymph collected from T/HS or trauma-sham shock (T/SS) rats over different time periods was injected intravenously into male rats at a rate of 1 mL/h for 3 hours. RBC deformability was measured using laser-assisted ektacytometer to calculate the elongation index. From the shear-stress elongation curve, the stress required for the erythrocytes to reach 50% of their maximal elongation was also determined. RBC deformability was measured before lymph infusion and at 1 hour and 3 hours after the initiation of lymph infusion. The effect of the lymph samples (5% v/v) was also determined in vitro by incubating naïve whole blood with the lymph samples. The potential role of T/HS lymph-induced RBC oxidant injury mediated by inducible nitric oxide synthase (iNOS)-generated oxidants and/or white blood cells (WBC) was investigated using iNOS inhibitors and WBC depletion, respectively. In all the in vivo studies, five to seven rats were studied per group. RESULTS: The intravenous injection of T/HS lymph but not T/SS lymph caused in vivo RBC injury. The biological activity of T/HS lymph varied over time with the RBC-injurious factors being produced only during the first 3 hours postshock. The in vivo inhibition of iNOS did not prevent lymph-induced RBC injury. T/HS lymph incubated in vitro with naïve whole blood resulted in RBC injury, but this injury was not observed in blood depleted of WBC. CONCLUSIONS: These results indicate that T/HS lymph produced during the initial 3-hour postshock period is sufficient to induce RBC injury in otherwise normal rats and that the lymph-induced RBC injury is not dependent on activation of the iNOS pathway but seems to require WBC.


Assuntos
Deformação Eritrocítica/efeitos dos fármacos , Linfa/fisiologia , Choque Hemorrágico/fisiopatologia , Animais , Deformação Eritrocítica/fisiologia , Eritrócitos/ultraestrutura , Guanidinas/farmacologia , Injeções Intravenosas , Contagem de Leucócitos , Masculino , Mesentério/fisiopatologia , Microscopia Eletrônica de Varredura , Óxido Nítrico/sangue , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Ratos , Ratos Sprague-Dawley , Choque Hemorrágico/sangue
8.
J Surg Res ; 166(2): e135-42, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21276979

RESUMO

BACKGROUND: Plasma factor XIII (FXIII) is responsible for stabilization of fibrin clot at the final stage of blood coagulation. Since FXIII has also been shown to modulate inflammation, endothelial permeability, as well as diminish multiple organ dysfunction (MOD) after gut ischemia-reperfusion injury, we hypothesized that FXIII would reduce MOD caused by trauma-hemorrhagic shock (THS). MATERIALS AND METHODS: Rats were subjected to a 90 min THS or trauma sham shock (TSS) and treated with either recombinant human FXIII A(2) subunit (rFXIII) or placebo immediately after resuscitation with shed blood or at the end of the TSS period. Lung permeability, lung and gut myeloperoxidase (MPO) activity, gut histology, neutrophil respiratory burst, microvascular blood flow in the liver and muscles, and cytokine levels were measured 3 h after the THS or TSS. FXIII levels were measured before THS or TSS and after the 3-h post-shock period. RESULTS: THS-induced lung permeability as well as lung and gut MPO activity was significantly lower in rFXIII-treated than in placebo-treated animals. Similarly, rFXIII-treated rats had lower neutrophil respiratory burst activity and less ileal mucosal injury. rFXIII-treated rats also had a higher liver microvascular blood flow compared with the placebo group. Cytokine response was more favorable in rFXIII-treated animals. Trauma-hemorrhagic shock did not cause a drop in FXIII activity during the study period. CONCLUSIONS: Administration of rFXIII diminishes THS-induced MOD in rats, presumably by preservation of the gut barrier function, limitation of polymorphonuclear leukocyte (PMN) activation, and modulation of the cytokine response.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Fator XIII/farmacologia , Insuficiência de Múltiplos Órgãos/tratamento farmacológico , Proteínas Recombinantes/farmacologia , Choque Hemorrágico/tratamento farmacológico , Lesão Pulmonar Aguda/etiologia , Animais , Quimiocinas/sangue , Citocinas/sangue , Modelos Animais de Doenças , Humanos , Íleo/irrigação sanguínea , Fígado/irrigação sanguínea , Pulmão/irrigação sanguínea , Masculino , Microcirculação/efeitos dos fármacos , Insuficiência de Múltiplos Órgãos/etiologia , Neutrófilos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Fluxo Sanguíneo Regional/efeitos dos fármacos , Explosão Respiratória/efeitos dos fármacos , Choque Hemorrágico/complicações
9.
Am J Physiol Gastrointest Liver Physiol ; 300(5): G853-61, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21183660

RESUMO

Gut injury and loss of normal intestinal barrier function are key elements in the paradigm of gut-origin systemic inflammatory response syndrome, acute lung injury, and multiple organ dysfunction syndrome (MODS). As hypoxia-inducible factor (HIF-1) is a critical determinant of the physiological and pathophysiological response to hypoxia and ischemia, we asked whether HIF-1 plays a proximal role in the induction of gut injury and subsequent lung injury. Using partially HIF-1α-deficient mice in an isolated superior mesenteric artery occlusion (SMAO) intestinal ischemia reperfusion (I/R) injury model (45 min SMAO followed by 3 h of reperfusion), we showed a direct relationship between HIF-1 activation and intestinal I/R injury. Specifically, partial HIF-1α deficiency attenuated SMAO-induced increases in intestinal permeability, lipid peroxidation, mucosal caspase-3 activity, and IL-1ß mRNA levels. Furthermore, partial HIF-1α deficiency prevented the induction of ileal mucosal inducible nitric oxide synthase (iNOS) protein levels after SMAO and iNOS deficiency ameliorated SMAO-induced villus injury. Resistance to SMAO-induced gut injury was also associated with resistance to lung injury, as reflected by decreased levels of myeloperoxidase, IL-6 and IL-10 in the lungs of HIF-1α(+/-) mice. In contrast, a short duration of SMAO (15 min) followed by 3 h of reperfusion neither induced mucosal HIF-1α protein levels nor caused significant gut and lung injury in wild-type or HIF-1α(+/-) mice. This study indicates that intestinal HIF-1 activation is a proximal regulator of I/R-induced gut mucosal injury and gut-induced lung injury. However, the duration and severity of the gut I/R insult dictate whether HIF-1 plays a gut-protective or deleterious role.


Assuntos
Fator 1 Induzível por Hipóxia/fisiologia , Enteropatias/patologia , Traumatismo por Reperfusão/patologia , Lesão Pulmonar Aguda/patologia , Animais , Western Blotting , Caspase 3/metabolismo , Ensaio de Imunoadsorção Enzimática , Genótipo , Fator 1 Induzível por Hipóxia/genética , Mucosa Intestinal/fisiologia , Intestinos/irrigação sanguínea , Malondialdeído/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico Sintase Tipo II/genética , Permeabilidade , Peroxidase/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
10.
J Trauma ; 70(3): 630-5, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20664373

RESUMO

BACKGROUND: The intestinal mucus layer is an important but understudied component of the intestinal barrier. Consequently, we tested the hypothesis that the anatomic sites of loss of the mucus layer would directly correlate with sites of intestinal villous injury after trauma-hemorrhagic shock (T/HS) and may, therefore, serve as loci of gut barrier failure. Consequently, to investigate this hypothesis, we used Carnoy's fixative solution to prepare fixed tissue blocks where both the gut morphology and the mucus layer could be assessed on the same tissues slides. METHODS: Male Sprague-Dawley rats were subjected to a laparotomy (trauma) and 90 minutes of sham shock (T/SS) or 35 mm Hg × 90 minutes of actual shock (T/HS). Three hours after resuscitation, the rats were killed, and samples of the terminal ileum were processed by fixation in Carnoy's solution. Gut injury was evaluated by determining the percentage of villi injured. The status of the intestinal mucus layer was quantified by determining the percentage of the villi covered by the mucus and the mucus thickness. RESULTS: Histologic analysis of gut injury showed that the incidence of gut injury was ∼10-fold higher in the T/HS than the T/SS rats (T/SS=2.5% ± 0.5% vs. T/HS=22.4% ± 0.5% of injured villi; p<0.01). The T/SS rats had 98% of their ileal mucosa covered with a mucus layer, and this was decreased after T/HS to 63% ± 3% (T/HS vs. T/SS; p<0.001). Furthermore, loss of the mucus layer was found to directly correlate with villous injury with a regression coefficient of r=0.94 (p<0.001). CONCLUSION: This study shows that T/HS significantly reduces the intestinal mucus layer and causes villous injury and that a correlation exists between specific anatomic sites of T/HS-induced loss of the mucus layer and gut injury.


Assuntos
Íleo/fisiopatologia , Mucosa Intestinal/fisiologia , Muco/fisiologia , Choque Hemorrágico/fisiopatologia , Choque Traumático/fisiopatologia , Análise de Variância , Animais , Técnicas Imunoenzimáticas , Laparotomia , Modelos Lineares , Masculino , Ratos , Ratos Sprague-Dawley
11.
Am J Physiol Gastrointest Liver Physiol ; 299(4): G833-43, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20689059

RESUMO

Acute lung injury (ALI) and the development of the multiple organ dysfunction syndrome (MODS) are major causes of death in trauma patients. Gut inflammation and loss of gut barrier function as a consequence of splanchnic ischemia-reperfusion (I/R) have been implicated as the initial triggering events that contribute to the development of the systemic inflammatory response, ALI, and MODS. Since hypoxia-inducible factor (HIF-1) is a key regulator of the physiological and pathophysiological response to hypoxia, we asked whether HIF-1 plays a proximal role in the induction of gut injury and subsequent lung injury. Utilizing partially HIF-1α-deficient mice in a global trauma hemorrhagic shock (T/HS) model, we found that HIF-1 activation was necessary for the development of gut injury and that the prevention of gut injury was associated with an abrogation of lung injury. Specifically, in vivo studies demonstrated that partial HIF-1α deficiency ameliorated T/HS-induced increases in intestinal permeability, bacterial translocation, and caspase-3 activation. Lastly, partial HIF-1α deficiency reduced TNF-α, IL-1ß, cyclooxygenase-2, and inducible nitric oxide synthase levels in the ileal mucosa after T/HS whereas IL-1ß mRNA levels were reduced in the lung after T/HS. This study indicates that prolonged intestinal HIF-1 activation is a proximal regulator of I/R-induced gut mucosal injury and gut-induced lung injury. Consequently, these results provide unique information on the initiating events in trauma-hemorrhagic shock-induced ALI and MODS as well as potential therapeutic insights.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Inflamação/metabolismo , Enteropatias/metabolismo , Intestinos/lesões , Traumatismo por Reperfusão/metabolismo , Animais , Apoptose , Citocinas/genética , Citocinas/metabolismo , Regulação da Expressão Gênica/fisiologia , Genótipo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Enteropatias/patologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Intestinos/patologia , Pulmão/metabolismo , Pulmão/patologia , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Camundongos , Permeabilidade , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Traumatismo por Reperfusão/patologia , Choque Hemorrágico/metabolismo , Choque Hemorrágico/patologia
12.
Shock ; 34(5): 475-81, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20220565

RESUMO

There is substantial evidence that gut barrier failure is associated with distant organ injury and systemic inflammation. After major trauma or stress, the factors and mechanisms involved in gut injury are unknown. Our primary hypothesis is that loss of the intestinal mucus layer will result in injury of the normal gut that is exacerbated by the presence of luminal pancreatic proteases. Our secondary hypothesis is that the injury produced in the gut will result in the production of biologically active mesenteric lymph and consequently distant organ (i.e., lung) injury. To test this hypothesis, five groups of rats were studied: 1) uninstrumented naive rats; 2) control rats in which a ligated segment of distal ileum was filled with saline; 3) rats with pancreatic proteases placed in their distal ileal segments; 4) rats with the mucolytic N-acetylcysteine (NAC) placed in their distal ileal segments; and 5) rats exposed to NAC and pancreatic proteases in their ileal segments. The potential systemic consequences of gut injury induced by NAC and proteases were assessed by measuring the biological activity of mesenteric lymph as well as gut-induced lung injury. Exposure of the normal intestine to NAC, but not saline or proteases, led to increased gut permeability, loss of mucus hydrophobicity, a decrease in the mucus layer, as well as morphological evidence of villous injury. Although proteases themselves did not cause gut injury, the combination of pancreatic proteases with NAC caused more severe injury than NAC alone, suggesting that once the mucus barrier is impaired, luminal proteases can injure the now vulnerable gut. Because comparable levels of gut injury caused by systemic insults are associated with gut-induced lung injury, which is mediated by biologically active factors in mesenteric lymph, we next tested whether this local model of gut injury would produce active mesenteric lymph or lead to lung injury. It did not, suggesting that gut injury by itself may not be sufficient to induce distant organ dysfunction. Therefore, loss of the intestinal mucus layer, especially in the presence of intraluminal pancreatic proteases, is sufficient to lead to injury and barrier dysfunction of the otherwise normal intestine but not to produce gut-induced distant organ dysfunction.


Assuntos
Lesão Pulmonar Aguda/etiologia , Íleo/patologia , Mucosa Intestinal/patologia , Linfa/fisiologia , Muco/fisiologia , Acetilcisteína/farmacologia , Acetilcisteína/toxicidade , Animais , Translocação Bacteriana/fisiologia , Azul Evans/farmacocinética , Expectorantes/farmacologia , Expectorantes/toxicidade , Interações Hidrofóbicas e Hidrofílicas , Íleo/efeitos dos fármacos , Íleo/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Ligadura , Pulmão/metabolismo , Masculino , Mesentério , Modelos Biológicos , Pâncreas/enzimologia , Peptídeo Hidrolases/farmacologia , Permeabilidade/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Explosão Respiratória
13.
PLoS One ; 5(2): e9421, 2010 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-20195535

RESUMO

BACKGROUND: Acute lung injury (ALI) and the development of the multiple organ dysfunction syndrome (MODS) is a major cause of death in trauma patients. Earlier studies in trauma hemorrhagic shock (T/HS) have documented that splanchnic ischemia leading to gut inflammation and loss of barrier function is an initial triggering event that leads to gut-induced ARDS and MODS. Since sex hormones have been shown to modulate the response to T/HS and proestrous (PE) females are more resistant to T/HS-induced gut and distant organ injury, the goal of our study was to determine the contribution of estrogen receptor (ER)alpha and ERbeta in modulating the protective response of female rats to T/HS-induced gut and lung injury. METHODS/PRINCIPAL FINDINGS: The incidence of gut and lung injury was assessed in PE and ovariectomized (OVX) female rats subjected to T/HS or trauma sham shock (T/SS) as well as OVX rats that were administered estradiol (E2) or agonists for ERalpha or ERbeta immediately prior to resuscitation. Marked gut and lung injury was observed in OVX rats subjected to T/HS as compared to PE rats or E2-treated OVX rats subjected to T/HS. Both ERalpha and ERbeta agonists were equally effective in limiting T/HS-induced morphologic villous injury and bacterial translocation, whereas the ERbeta agonist was more effective than the ERalpha agonist in limiting T/HS-induced lung injury as determined by histology, Evan's blue lung permeability, bronchoalevolar fluid/plasma protein ratio and myeloperoxidase levels. Similarly, treatment with either E2 or the ERbeta agonist attenuated the induction of the intestinal iNOS response in OVX rats subjected to T/HS whereas the ERalpha agonist was only partially protective. CONCLUSIONS/SIGNIFICANCE: Our study demonstrates that estrogen attenuates T/HS-induced gut and lung injury and that its protective effects are mediated by the activation of ERalpha, ERbeta or both receptors.


Assuntos
Estradiol/farmacologia , Receptor alfa de Estrogênio/agonistas , Receptor beta de Estrogênio/agonistas , Insuficiência de Múltiplos Órgãos/prevenção & controle , Animais , Enterócitos/efeitos dos fármacos , Enterócitos/enzimologia , Receptor alfa de Estrogênio/fisiologia , Receptor beta de Estrogênio/fisiologia , Estrogênios/farmacologia , Ciclo Estral , Feminino , Imuno-Histoquímica , Intestinos/lesões , Lesão Pulmonar/etiologia , Lesão Pulmonar/fisiopatologia , Lesão Pulmonar/prevenção & controle , Insuficiência de Múltiplos Órgãos/etiologia , Insuficiência de Múltiplos Órgãos/fisiopatologia , Óxido Nítrico Sintase Tipo II/metabolismo , Ovariectomia , Ratos , Ratos Sprague-Dawley , Choque Hemorrágico/complicações , Choque Traumático/complicações
14.
J Trauma ; 68(2): 279-88, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20154538

RESUMO

BACKGROUND: We tested the hypothesis that females are more resistant to trauma-hemorrhagic shock (T/HS)-induced gut injury than males, and this is related to better preservation of their intestinal mucus layer, which is influenced in turn by the estrus cycle stage at the time of injury. METHODS: Male, proestrus and diestrus female rats underwent a laparotomy (trauma) and 90 minutes of shock ( approximately 35 mm Hg). At 3 hours after reperfusion, terminal ileum was harvested and stained with Carnoy's Alcian Blue for mucus assessment, hematoxylin and eosin, and periodic acid schiff for villous and goblet cell morphology and injury. Ileal permeability was measured in separate intestinal segments using the ex vivo everted gut sac technique. RESULTS: When compared with males, proestrus female rats were significantly more resistant to T/HS-induced morphologic gut injury, as reflected in both a lower incidence of villous injury (14% vs. 22%; p < 0.05) and a lesser grade of injury (1.0 vs. 2.8; p < 0.05) as well as preservation of gut barrier function (17.9 vs. 32.2; p < 0.05). This resistance to gut injury was associated with significant preservation of the mucus layer (87% vs. 62%; p < 0.05) and was influenced by the estrus cycle stage of the female rats. There was a significant inverse correlation between mucus layer coverage and the incidence (r = 0.9; p < 0.0001) and magnitude (r = 0.89; p < 0.0001) of villous injury and gut permeability (r = 0.74; p < 0.001). CONCLUSIONS: The resistance of female rats to T/HS-induced intestinal injury and dysfunction was associated with better preservation of the intestinal mucus barrier and was to some extent estrus cycle-dependent. Preservation of the mucus barrier may protect against shock-induced gut injury and subsequent distant organ injury by limiting the ability of luminal contents such as bacteria and digestive enzymes from coming into direct contact with the epithelium.


Assuntos
Estro/fisiologia , Mucosa Intestinal/patologia , Mucosa Intestinal/fisiopatologia , Choque Hemorrágico/complicações , Animais , Permeabilidade da Membrana Celular/fisiologia , Feminino , Íleo/patologia , Masculino , Insuficiência de Múltiplos Órgãos/fisiopatologia , Insuficiência de Múltiplos Órgãos/prevenção & controle , Ratos , Ratos Sprague-Dawley
15.
J Trauma ; 68(1): 35-41, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20065755

RESUMO

BACKGROUND: Decreased red blood cell (RBC) deformability and activation of neutrophils (polymorphonuclear leukocytes [PMN]) after trauma-hemorrhagic shock (T/HS) have been implicated in the development of multiple organ dysfunction. Experimentally, female animals seemed to be protected from the effects of T/HS, at least in part, because of elevated estrogen levels. Thus, we examined the relative role of estrogen receptor (ER)-alpha and -beta in this protective response. METHODS: To accomplish this goal, RBC deformability and neutrophil respiratory burst activity were measured in several groups of hormonally intact or ovariectomized (OVX) female rats subjected to T/HS (laparotomy plus hemorrhage to an MAP of 30 mm Hg to 35 mm Hg for 90 minutes) or trauma-sham shock (T/SS) and 3 hours of reperfusion. These groups included rats receiving vehicle, estradiol, or either an ER-alpha agonist or an ER-beta agonist administered at the end of the shock period just before volume resuscitation. RESULTS: RBC deformability and neutrophil activation were similar among all the T/SS groups and were not different from that observed in the non-OVX female rats subjected to T/HS. In contrast, RBC deformability was reduced and neutrophil activation was increased in the OVX, T/HS female rats as compared with the T/SS groups or the non-OVX, T/HS rats. The administration of estrogen to the T/HS, OVX rats returned RBC and neutrophil function to normal. Both the ER-alpha and -beta agonist partially, but not completely, protected the OVX rats from T/HS-induced loss of RBC deformability, whereas only the ER-beta agonist prevented the increase in neutrophil activation. CONCLUSIONS: The protective effects of estrogen on T/HS-induced RBC deformability are mediated, at least in part, via activation of both ER-alpha and -beta, whereas ER-beta activation is involved in limiting T/HS-induced neutrophil activation.


Assuntos
Deformação Eritrocítica , Receptor alfa de Estrogênio/fisiologia , Receptor beta de Estrogênio/fisiologia , Choque Hemorrágico/sangue , Choque Traumático/sangue , Animais , Receptor alfa de Estrogênio/agonistas , Receptor beta de Estrogênio/agonistas , Feminino , Ativação de Neutrófilo/efeitos dos fármacos , Neutrófilos/metabolismo , Nitrilas/farmacologia , Ovariectomia , Fenóis , Propionatos/farmacologia , Pirazóis/farmacologia , Ratos , Ratos Sprague-Dawley , Explosão Respiratória , Choque Hemorrágico/fisiopatologia , Choque Traumático/fisiopatologia
16.
Anesth Analg ; 110(6): 1652-60, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20103541

RESUMO

BACKGROUND: Protective mechanical ventilation with low tidal volume (Vt) and low plateau pressure reduces mortality and decreases the length of mechanical ventilation in patients with acute respiratory distress syndrome. Mechanical ventilation that will protect normal lungs during major surgical procedures of long duration may improve postoperative outcomes. We performed an animal study comparing 3 ventilation strategies used in the operating room in normal lungs. We compared the effects on pulmonary mechanics, inflammatory mediators, and lung tissue injury. METHODS: Female pigs were randomized into 3 groups. Group H-Vt/3 (n = 6) was ventilated with a Vt of 15 mL/kg predicted body weight (PBW)/positive end-expiratory pressure (PEEP) of 3 cm H(2)O, group L-Vt/3 (n = 6) with a Vt of 6 mL/kg PBW/PEEP of 3 cm H(2)O, and group L-Vt/10 (n = 6) with a Vt of 6 mL/kg PBW/PEEP of 10 cm H(2)O, for 8 hours. Hemodynamics, airway mechanics, arterial blood gases, and inflammatory markers were monitored. Bronchoalveolar lavage (BAL) was analyzed for inflammatory markers and protein concentration. The right lower lobe was assayed for mRNA of specific cytokines. The right lower lobe and right upper lobe were evaluated histologically. RESULTS: In contrast to groups H-Vt/3 and L-Vt/3, group L-Vt/10 exhibited a 6-fold increase in inflammatory mediators in BAL (P < 0.001). Cytokines in BAL were similar in groups H-Vt/3 and L-Vt/3. Group H-Vt/3 had a significantly lower lung injury score than groups L-Vt/3 and L-Vt/10. CONCLUSION: Comparing intraoperative strategies, ventilation with high PEEP resulted in increased production of inflammatory markers. Low PEEP resulted in lower levels of inflammatory markers. High Vt/low PEEP resulted in less histologic lung injury.


Assuntos
Pneumonia Associada à Ventilação Mecânica/etiologia , Respiração com Pressão Positiva/efeitos adversos , Volume de Ventilação Pulmonar , Anestesia , Animais , Líquido da Lavagem Broncoalveolar/citologia , Dióxido de Carbono/sangue , Citocinas/biossíntese , Feminino , Hemodinâmica , Pulmão/patologia , Oxigênio/sangue , Pneumonia/etiologia , Pneumonia/patologia , Pneumonia/prevenção & controle , Pneumonia Associada à Ventilação Mecânica/patologia , Pneumonia Associada à Ventilação Mecânica/prevenção & controle , Troca Gasosa Pulmonar , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Testes de Função Respiratória , Mecânica Respiratória/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Suínos
17.
Shock ; 34(2): 205-13, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19953001

RESUMO

Hemorrhage remains a common cause of death despite the recent advances in critical care, in part because conventional resuscitation fluids fail to prevent lethal inflammatory responses. Here, we analyzed whether ethyl pyruvate can provide a therapeutic anti-inflammatory potential to resuscitation fluids and prevent organ damage in porcine hemorrhage. Adult male Yorkshire swine underwent lethal hemorrhage with trauma and received no resuscitation treatment or resuscitation with Hextend alone, or supplemented with ethyl pyruvate. Resuscitation with ethyl pyruvate did not improve early hemodynamics but prevented hyperglycemia, the intrinsic coagulation pathway, serum aspartate aminotransferase, and myeloperoxidase in the major organs. Resuscitation with ethyl pyruvate provided an anti-inflammatory potential to restrain serum TNF and high-mobility group B protein 1 levels. Ethyl pyruvate inhibited nuclear factor [kappa]B in the spleen but not in the other major organs. In contrast, ethyl pyruvate inhibited NO in all the major organs, and it also inhibited TNF production in the major organs but in the lung and heart. The most significant effects were found in the terminal ileum where ethyl pyruvate inhibited cytokine production, restrained myeloperoxidase activity, preserved the intestinal epithelium, and prevented the systemic distribution of bacterial endotoxin. Ethyl pyruvate can provide therapeutic anti-inflammatory benefits to modulate splenic nuclear factor [kappa]B, restrain inflammatory responses, and prevent hyperglycemia, the intrinsic coagulation pathway, and organ injury in porcine hemorrhage without trauma.


Assuntos
Anti-Inflamatórios/uso terapêutico , Hemorragia/tratamento farmacológico , Inflamação/tratamento farmacológico , Piruvatos/uso terapêutico , Ressuscitação/métodos , Animais , Coagulação Sanguínea/efeitos dos fármacos , Hiperglicemia/prevenção & controle , Mucosa Intestinal/efeitos dos fármacos , Masculino , NF-kappa B/metabolismo , Suínos , Fator de Necrose Tumoral alfa/sangue
18.
Circ Res ; 105(2): 158-66, 2009 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-19542014

RESUMO

Phenotypic modulation of vascular smooth muscle cells (VSMCs) plays a critical role in the pathogenesis of a variety of proliferative vascular diseases. Recently, we have found that microRNA (miRNA) miR-145 is the most abundant miRNA in normal vascular walls and in freshly isolated VSMCs; however, the role of miR-145 in VSMC phenotypic modulation and vascular diseases is currently unknown. Here we find that miR-145 is selectively expressed in VSMCs of the vascular wall and its expression is significantly downregulated in the vascular walls with neointimal lesion formation and in cultured dedifferentiated VSMCs. More importantly, both in cultured rat VSMCs in vitro and in balloon-injured rat carotid arteries in vivo, we demonstrate that the noncoding RNA miR-145 is a novel phenotypic marker and a novel phenotypic modulator of VSMCs. VSMC differentiation marker genes such as SM alpha-actin, calponin, and SM-MHC are upregulated by premiR-145 or adenovirus expressing miR-145 (Ad-miR-145) but are downregulated by the miR-145 inhibitor 2'OMe-miR-145. We have further identified that miR-145-mediated phenotypic modulation of VSMCs is through its target gene KLF5 and its downstream signaling molecule, myocardin. Finally, restoration of miR-145 in balloon-injured arteries via Ad-miR-145 inhibits neointimal growth. We conclude that miR-145 is a novel VSMC phenotypic marker and modulator that is able of controlling vascular neointimal lesion formation. These novel findings may have extensive implications for the diagnosis and therapy of a variety of proliferative vascular diseases.


Assuntos
Lesões das Artérias Carótidas/metabolismo , Proliferação de Células , MicroRNAs/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Túnica Íntima/metabolismo , Animais , Lesões das Artérias Carótidas/genética , Lesões das Artérias Carótidas/patologia , Cateterismo/efeitos adversos , Desdiferenciação Celular , Células Cultivadas , Modelos Animais de Doenças , Endotélio Vascular/metabolismo , Regulação da Expressão Gênica , Hiperplasia , Fatores de Transcrição Kruppel-Like/metabolismo , Masculino , MicroRNAs/genética , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Proteínas Nucleares/metabolismo , Fenótipo , Fator de Crescimento Derivado de Plaquetas/metabolismo , Ratos , Ratos Sprague-Dawley , Fatores de Tempo , Transativadores/metabolismo , Transfecção , Túnica Íntima/patologia
19.
Crit Care Med ; 37(3): 1000-10, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19237910

RESUMO

OBJECTIVE: To test the hypothesis that trauma-hemorrhagic shock (T/HS)-induced changes in red blood cells (RBC) contribute to the reduction of blood flow in distant organs. DESIGN: Laboratory study. SETTING: Academic medical center laboratory. SUBJECTS: Specific pathogen-free male Sprague-Dawley rats weighing between 250 and 350 g. INTERVENTIONS: Rats were transfused with trauma-sham shock (T/SS), or T/HS whole blood, or RBC-depleted blood (blood with the RBC removed and consisting of white blood cells and plasma). MEASUREMENTS AND MAIN RESULTS: Cardiac output and organ blood flow were measured by the radioactive microsphere technique. RBC tissue trapping, deformability, and RBC aggregation and adhesion were studied. Measurements of RBC adenosine triphosphate (ATP) and plasma fibrinogen were performed. Exchange transfusion with T/SS blood did not alter cardiac output or organ blood flow. However, cardiac output and blood flow in several organs were decreased when T/HS whole blood was used and RBCs were trapped in the organs that evidenced decreased blood flow. T/HS also increased RBC aggregation and adhesion, and decreased deformability. The ability of T/HS exchange transfusion to decrease microcirculatory blood flow did not appear to be due to plasma factors or non-RBC elements (i.e., white blood cell), because organ blood flow was not reduced after exchange transfusion with T/HS RBC-depleted blood. Likewise, neither decreased RBC ATP nor increased plasma fibrinogen explained the T/HS-induced changes that were observed. There was no change in fibrinogen levels during or after shock. Although there was a transient decrease in T/HS erythrocyte ATP levels during the early shock period, in contrast to RBC function, the ATP levels had returned to normal with resuscitation. CONCLUSIONS: T/HS induces significant changes in RBC functions and the injection of T/HS, but not T/SS, RBC leads to decreased organ blood flow. These findings confirm the hypothesis that T/HS-induced RBC alterations will directly cause organ hypoperfusion and suggest that T/HS-induced RBC damage contributes to this process. Thus, T/HS-induced changes in RBC function may contribute to the development of shock-induced multiple organ failure.


Assuntos
Eritrócitos Anormais , Microcirculação , Fluxo Sanguíneo Regional , Choque Hemorrágico/fisiopatologia , Choque Traumático/fisiopatologia , Animais , Masculino , Ratos , Ratos Sprague-Dawley
20.
Am J Physiol Lung Cell Mol Physiol ; 296(3): L404-17, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19118093

RESUMO

Intestinal ischemia after trauma-hemorrhagic shock (T/HS) results in gut barrier dysfunction and the production/release of biologically active and tissue injurious factors in the mesenteric lymph, which, in turn, causes acute lung injury and a systemic inflammatory state. Since T/HS-induced lung injury is associated with pulmonary endothelial and epithelial cell programmed cell death (PCD) and was abrogated by mesenteric lymph duct ligation, we sought to investigate the cellular pathways involved. Compared with trauma-sham shock (T/SS) rats, a significant increase in caspase-3 and M30 expression was detected in the pulmonary epithelial cells undergoing PCD, whereas apoptosis-inducing factor (AIF), but not caspase-3, was detected in endothelial cells undergoing PCD. This AIF-mediated pulmonary endothelial PCD response was validated in an in situ femoral vein assay where endothelial cells were found to express AIF but not caspase-3. To complement these studies, human umbilical vein endothelial cell (HUVEC), human lung microvascular endothelial cell (HLMEC), and human alveolar type II epithelial cell (A549) lines were used as in vitro models. T/HS lymph induced the nuclear translocation of AIF in HUVEC and HLMEC, and caspase inhibition in these cells did not afford any cytoprotection. For proof of principle, AIF silencing in HUVEC reversed the cytotoxic effects of T/HS on cell viability and DNA fragmentation. In A549 cells, T/HS lymph activated caspase-3-mediated apoptosis, which was partially abrogated by N-benzyloxycarbonyl-Val-Ala-Asp (zVAD). Additionally, T/HS lymph did not cause the nuclear translocation of AIF in A549 cells. Collectively, T/HS-induced pulmonary endothelial PCD occurs via an AIF-dependent caspase-independent pathway, whereas epithelial cells undergo apoptosis by a caspase-dependent pathway.


Assuntos
Lesão Pulmonar Aguda/patologia , Apoptose/fisiologia , Pulmão/patologia , Choque Hemorrágico/patologia , Lesão Pulmonar Aguda/fisiopatologia , Animais , Fator de Indução de Apoptose/antagonistas & inibidores , Fator de Indução de Apoptose/genética , Fator de Indução de Apoptose/fisiologia , Caspases/fisiologia , Células Cultivadas , Células Endoteliais/patologia , Células Epiteliais/patologia , Humanos , Pulmão/fisiopatologia , Linfa/fisiologia , Masculino , Interferência de RNA , RNA Interferente Pequeno/genética , Ratos , Ratos Sprague-Dawley , Choque Hemorrágico/fisiopatologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...