Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Oncol ; 13: 1195404, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37404759

RESUMO

Introduction: To investigate the application value of a three-dimensional (3D) printed pelvic model in laparoscopic radical resection of rectal cancer. Methods: Clinical data of patients undergoing laparoscopic radical rectal cancer surgery in The Second People's Hospital of Lianyungang City from May 2020 to April 2022 were selected. Patients were randomly divided into general imaging examination group (control group, n=25) and 3D printing group (observation group, n=25) by random number table method, and the perioperative situation of patients in the two groups was compared. Results: There was no significant difference in general data between the two groups (p>0.05). Operation time, intraoperative blood loss, intraoperative time to locate inferior mesenteric artery, intraoperative time to locate left colic artery, first postoperative exhaust time and length of hospital stay in the observation group were all lower than those in the control group (P < 0.05); There were no significant differences in the total number of lymph nodes and complications between the two groups (P > 0.05). Discussion: The application of 3D printed pelvic model in laparoscopic radical resection of rectal cancer is conducive to understanding pelvic structure and mesenteric vascular anatomy, reducing intraoperative bleeding and shortening operation time, which is worthy of further clinical application.

2.
Front Oncol ; 12: 726985, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35392221

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive and lethal malignancy with a limited response to current therapies. Novel and effective treatment is urgently needed. Herein, a chimeric antigen receptor (CAR)-NK92 cell line, with an interleukin (IL)-15Rα-sushi/IL-15 complex and a Programmed cell death-1(PD1) signal inverter was constructed and named SP ( S ushi-IL15- P D1). We showed that CAR expression enabled SP cells to proliferate independently of IL-2 and became more resistant to nutrition starvation-induced apoptosis. Meanwhile, SP cells were more effective than NK92 in PDAC cell killing assays in vitro and in vivo, and there was a positive correlation between the killing capability of SP cells and PD-L1 expression in pancreatic cancer cells. Based on the synergistic and comprehensive effects of the special CAR structure, the adhesion, responsiveness, degranulation efficiency, targeted delivery of cytotoxic granule content, and cytotoxicity of SP cells were significantly stronger than those of NK92. In conclusion, the SP cell line is a promising adoptive immunotherapy cell line and has potential value as an adjuvant treatment for pancreatic cancer, especially in patients with high PD-L1 expression.

3.
Biomed Pharmacother ; 125: 109972, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32036221

RESUMO

Ephrin-2 (EFNB2) is expressed at abnormally high levels in some neoplasms, such as squamous cell carcinoma of the head and neck and colorectal cancer. Its overexpression is associated with the malignant progression of tumors. However, the expression of EFNB2 in pancreatic ductal adenocarcinoma (PDAC) has not been thoroughly studied. EFNB2 expression was evaluated by quantitative real-time PCR, immunohistochemistry, and western blotting. Furthermore, the association between its expression levels and the clinicopathological features of PDAC patients was explored. To determine the underlying mechanisms of EFNB2, we transfected PDAC cells with small interfering RNA and performed in vitro and in vivo experiments. EFNB2 expression levels were significantly increased in cancer tissues and were associated with PDAC clinical stage and Ki67 expression. The down-regulation of EFNB2 inhibited cell proliferation by up-regulating p53/p21-mediated G0/G1 phase blockade. Knockdown of EFNB2 decreased the migration and invasion of PDAC cells by blocking epithelial-mesenchymal transition. These results suggested that EFNB2 may participate in the development of PDAC by promoting cell proliferation, migration, and invasion. Thus, EFNB2 is a potential target for the diagnosis and treatment of PDAC.


Assuntos
Adenocarcinoma/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Efrina-B2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Quinases Ativadas por p21/metabolismo , Adenocarcinoma/genética , Carcinoma Ductal Pancreático/genética , Movimento Celular , Proliferação de Células , Efrina-B2/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Proteína Supressora de Tumor p53/genética , Quinases Ativadas por p21/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...