Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ChemSusChem ; 17(5): e202301421, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38102854

RESUMO

An efficiently catalyzed synthesis of pharmaceutically relevant 1,2,3-trazoles from renewable resources is highly desirable. However, due to incompatible catalysis conditions, this endeavor remained challenging so far. Herein, a practical access protocol to 1,2,3-triazoles, starting from lignin phenolic ß-O-4 with γ-OH group utilizing a vanadium-based catalyst is presented. A broad substrate scope reaching up to 97 % yield of 1,2,3-triazoles are obtained. The reaction pathway includes selective cleavage of double C-O bonds, cycloaddition, and dehydrogenation. Mechanistic studies and density-functional theory (DFT) calculations suggest that the V-based complex acts as a bifunctional catalyst for both selective C-O bonds cleavage and dehydrogenation. This synthetic pathway has been applied for the synthesis of pharmacological and biological active carbohydrate derivatives starting from biomass components as feedstock, enabling a potential sustainable route to triazolyl carbohydrate derivatives, which paves the way for lignin-based heterocyclic aromatics in the pharmaceutical applications.

2.
Nat Commun ; 14(1): 6076, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37770462

RESUMO

One-pot synthesis of heterocyclic aromatics with good optical properties from phenolic ß-O-4 lignin segments is of high importance to meet high value added biorefinery demands. However, executing this process remains a huge challenge due to the incompatible reaction conditions of the depolymerization of lignin ß-O-4 segments containing γ-OH functionalities and bioresource-based aggregation-induced emission luminogens (BioAIEgens) formation with the desired properties. In this work, benzannulation reactions starting from lignin ß-O-4 moieties with 3-alkenylated indoles catalyzed by vanadium-based complexes have been successfully developed, affording a wide range of functionalized carbazoles with up to 92% yield. Experiments and density functional theory calculations suggest that the reaction pathway involves the selective cleavage of double C-O bonds/Diels-Alder cycloaddition/dehydrogenative aromatization. Photophysical investigations show that these carbazole products represent a class of BioAIEgens with twisted intramolecular charge transfer. Distinctions of emission behavior were revealed based on unique acceptor-donor-acceptor-type molecular conformations as well as molecular packings. This work features lignin ß-O-4 motifs with γ-OH functionalities as renewable substrates, without the need to apply external oxidant/reductant systems. Here, we show a concise and sustainable route to functional carbazoles with AIE properties, building a bridge between lignin and BioAIE materials.

3.
Molecules ; 28(13)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37446919

RESUMO

A heavy oil activator is an amphiphilic polymer solution that contains hydrophilic and oleophobic groups. It can enhance heavy oil recovery efficiency. This paper studied the changes in the distribution of the remaining oil after activator flooding and the performance of heavy oil's active agent. Nuclear magnetic resonance spectroscopy, laser confocal microscopy, microscopic visualization, and CT scanning techniques were used to analyze crude oil utilization, and the distribution characteristics of the remaining oil during activator flooding of heavy oil. The results showed that the heavy oil activator solution presented a dense spatial network and good viscosification ability. The activator could reduce the interfacial tension of oil and water, disassemble the heavy components of dispersed heavy oil and reduce the viscosity of heavy oil. The utilization degree of the remaining oil in small and middle pores increased significantly after activator flooding, the remaining oil associated with membranous-like and clusterlike structures was utilized to a high degree, and the decline of light/heavy fraction in heavy oil slowed down. Heavy oil activator improved the swept volume and displacement efficiency of heavy oil, playing a significant role in improving the extent of recovery of heavy oil reservoirs.


Assuntos
Petróleo , Polímeros , Campos de Petróleo e Gás , Viscosidade , Tensão Superficial
4.
Angew Chem Int Ed Engl ; 61(38): e202206284, 2022 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-35869027

RESUMO

Direct production of heterocyclic aromatic compounds from lignin ß-O-4 models remains a huge challenge due to the incompatible catalysis for aryl ether bonds cleavage and heterocyclic ring formation. Herein, the first example of quinoline synthesis from ß-O-4 model compounds by a one-pot cascade reaction is reported in yields up to 89 %. The reaction pathway involves selective cleavage of C-O bonds, dehydrogenation, aldol condensation, C-N bond formation along with heterocyclic aromatic ring construction. The control experiments suggest that both imine and chalcone were identified as the key intermediates, and the rate determining step as well as the preferred pathway were experimentally clarified and supported by density functional theory (DFT) calculations. Based on this protocol, the conversion of ß-O-4 polymer delivered 56 wt % yield of quinoline derivative in three steps. This transformation provides a potential petroleum-independent choice for heterocyclic aromatic chemicals.


Assuntos
Compostos Heterocíclicos , Quinolinas , Elementos de Transição , Catálise , Éteres/química , Lignina/química
5.
Nat Commun ; 13(1): 3365, 2022 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-35690613

RESUMO

Heteroatom-participated lignin depolymerization for heterocyclic aromatic compounds production is of great importance to expanding the product portfolio and meeting value-added biorefinery demand, but it is also particularly challenging. In this work, the synthesis of pyrimidines from lignin ß-O-4 model compounds, the most abundant segment in lignin, mediated by NaOH through a one-pot multi-component cascade reaction is reported. Mechanism study suggests that the transformation starts by NaOH-induced deprotonation of Cα-H bond in ß-O-4 model compounds, and involves highly coupled sequential cleavage of C-O bonds, alcohol dehydrogenation, aldol condensation, and dehydrogenative aromatization. This strategy features transition-metal free catalysis, a sustainable universal approach, no need of external oxidant/reductant, and an efficient one-pot process, thus providing an unprecedented opportunity for N-containing aromatic heterocyclic compounds synthesis from biorenewable feedstock. With this protocol, an important marine alkaloid meridianin derivative can be synthesized, emphasizing the application feasibility in pharmaceutical synthesis.


Assuntos
Lignina , Elementos de Transição , Catálise , Etanol , Lignina/metabolismo , Oxirredução , Pirimidinas , Hidróxido de Sódio
6.
J Org Chem ; 85(14): 9117-9128, 2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32545962

RESUMO

Three-component formal [3 + 1 + 2] benzannulation reactions of indole-3-carbaldehydes or 1-methyl-pyrrole-2-carbaldehydes with two different molecules of saturated ketones have been successfully developed under Cu-catalyzed and 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-mediated conditions. Various unsymmetrically substituted carbazoles and indoles were obtained up to 95% yield. Furthermore, the resulting products exhibit unusual aggregation-induced emission (AIE) properties in the solid state. This method features high atom-economy, cheap catalysts and oxidants, wide substrate scope, and saturated ketones as one-carbon and two-carbon sources, thus providing an efficient approach to polycyclic carbazole and indole compounds.

7.
ChemSusChem ; 13(12): 3115-3121, 2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32212301

RESUMO

Single-atom catalysts (SACs) as a bridge between hetero- and homogeneous catalysis have attracted much attention. However, it is still challenging to generate stable single atoms with high metal loadings, and the application of SACs in traditionally homogeneous catalytic reactions is highly desirable. Herein, a Cu SAC with a high Cu loading of 8.7 wt % supported on coordinatively unsaturated Al2 O3 was prepared and used in the amine-free synthesis of homoallylboranes. Up to 99 % conversion, 95 % 1,4-selective boration of the enals, and 48-68 % isolated yields of homoallylboranes were achieved, equaling the results of reported homogenous catalysts, and the system was more efficient and stable than nano Cu/γ-Al2 O3 . Mechanistic investigation indicated that Cu-Bpin species are the active intermediates of selective boration. The superior catalytic and recycling performance of Cu SAC paves an efficient and green path toward selective synthesis of homoallyborane fine chemicals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...