Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3754, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704395

RESUMO

Due to their responsiveness to modulation by external direct current fields, dielectric tunable materials are extensively utilized in integrated components, such as ferroelectric phase shifters. Barium strontium titanate ceramics have been considered the most potential tunable materials for a long time. However, the significant dielectric loss and high voltage drive have limited their further applications. Recently, Bi6Ti5WO22 ceramic has regained attention for its high dielectric tunability with low loss. In this study, we judiciously introduce Nb5+ with a larger ionic radius, replacing Ti4+ and W6+. This successful substitution enables the modulation of the phase transition temperature of Bi6Ti5WO22 ceramics to room temperature, resulting in superior tunable properties. Specifically, the 0.7Bi6Ti5WO22-0.3Bi6Ti4Nb2O22 ceramics exhibit giant tunability (~75.6%) with ultralow loss (<0.002) under a low electric field (1.5 kV/mm). This tunability is twice that of barium strontium titanate ceramics with a similar dielectric constant and only one-tenth of the loss. Neutron powder diffraction and transmission-electron-microscopy illustrate the nanodomains and micro-strains influenced by ion substitution. Density functional theory simulation calculations reveal the contribution of ion substitution to polarization. The research provides an ideal substitute for tunable material and a general strategy for adjusting phase transition temperature to improve dielectric properties.

3.
Artigo em Inglês | MEDLINE | ID: mdl-37902771

RESUMO

In developing low-temperature cofired ceramic (LTCC) technology for high-density packaging or advanced packaged electronics, matching the coefficient of thermal expansion (CTE) among the packaged components is a critical challenge to improve reliability. The CTEs of solders and organic laminates are usually larger than 16.0 ppm of °C1-, while most low-permittivity (εr) dielectric ceramics have CTEs of less than 10.0 ppm °C1-. Therefore, a good CTE match between organic laminates and dielectric ceramics is required for further LTCC applications. In this paper, we propose a high-CTE BaSO4-BaF2 LTCC as a potential solution for high-reliability packaged electronics. The BaSO4-BaF2 ceramics have the advantages of a wide low-temperature sintering range (650-850 °C), low loss, temperature stability, and Ag compatibility, ensuring excellent performance in LTCC technology. The 95 wt %BaSO4-5 wt %BaF2 ceramic has a εr of 9.1, a Q × f of 40,100 GHz @11.03 GHz (Q = 1/tan δ), a temperature coefficient of the resonant frequency of -11.2 ppm °C1-, a CTE of +21.8 ppm °C1-, and a thermal conductivity of 1.3 W mK-1 when sintered at 750 °C. Furthermore, a dielectric resonant antenna using BaSO4-BaF2 ceramics, a typically packaged component of LTCC and laminate, was designed and used to verify the excellent performance by a gain of 6.0 dBi at a central frequency of 8.97 GHz and a high radiation efficiency of 90% over a bandwidth of 760 MHz. Good match and low thermal stress were found in the packaged components of BaSO4-BaF2 ceramics, organic laminates, and Sn-based solders by finite element analysis, proving the potential of this LTCC for high-reliability packaged electronics.

4.
Nat Commun ; 14(1): 5725, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37714850

RESUMO

The immense potential of lead-free dielectric capacitors in advanced electronic components and cutting-edge pulsed power systems has driven enormous investigations and evolutions heretofore. One of the significant challenges in lead-free dielectric ceramics for energy-storage applications is to optimize their comprehensive characteristics synergistically. Herein, guided by phase-field simulations along with rational composition-structure design, we conceive and fabricate lead-free Bi0.5Na0.5TiO3-Bi0.5K0.5TiO3-Sr(Sc0.5Nb0.5)O3 ternary solid-solution ceramics to establish an equitable system considering energy-storage performance, working temperature performance, and structural evolution. A giant Wrec of 9.22 J cm-3 and an ultra-high ƞ ~ 96.3% are realized in the BNKT-20SSN ceramic by the adopted repeated rolling processing method. The state-of-the-art temperature (Wrec ≈ 8.46 ± 0.35 J cm-3, ƞ ≈ 96.4 ± 1.4%, 25-160 °C) and frequency stability performances at 500 kV cm-1 are simultaneously achieved. This work demonstrates remarkable advances in the overall energy storage performance of lead-free bulk ceramics and inspires further attempts to achieve high-temperature energy storage properties.

5.
ACS Appl Mater Interfaces ; 15(15): 19129-19136, 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37018740

RESUMO

Microwave dielectric ceramics with permittivity (εr) ∼ 20 play an important role in massive multiple-input multiple-output (MIMO) technology in 5G. Although fergusonite-structured materials with low dielectric loss are good candidates for 5G application, tuning the temperature coefficient of resonant frequency (TCF) remains a problem. In the present work, smaller V5+ ions (rV = 0.355 Å, with coordination number (CN) = 4) were substituted for Nb5+ (rNb = 0.48 Å with CN = 4) in the Nd(Nb1-xVx)O4 ceramics, which, according to in situ X-ray diffraction data, lowered the fergusonite-to-scheelite phase transition (TF-S) to 400 °C for x = 0.2. The thermal expansion coefficient (αL) of the high-temperature scheelite phase was +11 ppm/°C, whereas for the low-temperature fergusonite phase, it was + 14 < αL < + 15 ppm/°C. The abrupt change in αL, the associated negative temperature coefficient of permittivity (τε), and the minimum value of εr at TF-S resulted in a near-zero TCF ∼ (+7.8 ppm/°C) for Nd(Nb0.8V0.2)O4 (εr ∼ 18.6 and Qf ∼ 70,100 GHz). A method to design near-zero TCF compositions based on modulation of τε and αL at TF-S is thus demonstrated that may also be extended to other fergusonite systems.

6.
ACS Appl Mater Interfaces ; 14(43): 48897-48906, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36268902

RESUMO

Vanadium(V)-substituted cerium niobate [Ce(Nb1-xVx)O4, CNVx] ceramics were prepared to explore their structure-microwave (MW) property relations and application in C-band dielectric resonator antennas (DRAs). X-ray diffraction and Raman spectroscopy revealed that CNVx (0.0 ≤ x ≤ 0.4) ceramics exhibited a ferroelastic phase transition at a critical content of V (xc = 0.3) from a monoclinic fergusonite structure to a tetragonal scheelite structure (TF-S), which decreased in temperature as a function of x according to thermal expansion analysis. Optimum microwave dielectric performance was obtained for CNV0.3 with permittivity (εr) of ∼16.81, microwave quality factor (Qf) of ∼41 300 GHz (at ∼8.7 GHz), and temperature coefficient of the resonant frequency (TCF) of ∼ -3.5 ppm/°C. εr is dominated by Ce-O phonon absorption in the microwave band; Qf is mainly determined by the porosity, grain size, and proximity of TF-S; and TCF is controlled by the structural distortions associated with TF-S. Terahertz (THz) (0.20-2.00 THz, εr ∼ 12.52 ± 0.70, and tan δ ∼ 0.39 ± 0.17) and infrared measurements are consistent, demonstrating that CNVx (0.0 ≤ x ≤ 0.4) ceramics are effective in the sub-millimeter as well as MW regime. A cylindrical DRA prototype antenna fabricated from CNV0.3 resonated at 7.02 GHz (|S11| = -28.8 dB), matching simulations, with >90% radiation efficiency and 3.34-5.93 dB gain.

7.
Inorg Chem ; 59(14): 9693-9698, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32618471

RESUMO

Among the KCoO2-type phases, the orthorhombic layered nitride CaTiN2 is a newly reported high dielectric permittivity material (εr ∼ 1300-2500 within 104-106 Hz from 80 to 450 K) while the tetragonal SrTiN2 is reported to display an unintentional metallic conduction property. In this work, a Ca1-xSrxTiN2 solid solution was synthesized, in which the insulating SrTiN2 end member and some Sr-doped CaTiN2 samples were successfully obtained, and therefore, the dielectric properties of the Ca1-xSrxTiN2 solid solution were investigated. The Sr substitution for Ca drove an orthorhombic-to-tetragonal phase transformation in Ca1-xSrxTiN2, which reduced the dielectric permittivity significantly. The tetragonal SrTiN2 displays a much lower dielectric permittivity (εr ∼ 20-70 in 105-106 Hz and 10-300 K) than that of CaTiN2. The comparison on the dielectric permittivities and structures of CaTiN2 and SrTiN2 indicates that the structural distortion arising from the splitting of N planes between Ti layers within the TiN2 pyramidal layers could be a plausible structural origin of the high bulk dielectric permittivity of CaTiN2.

8.
ACS Appl Mater Interfaces ; 11(13): 12986-12992, 2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30860352

RESUMO

Two-dimensional (2D) nanomaterials are remarkably attractive platform candidates for signal transduction through fluorescence resonance energy transfer or photo-induced electron-transfer pathway. In this work, a 2D Hofmann metal organic framework (hMOF) monolayer nanosheet was developed as an axial coordination platform for DNA detection via a ligand-to-metal charge-transfer quenching mechanism. Through modulating the position of phosphonate groups of rigid ligands, a layer-structured hMOF was synthesized. The single crystals showed that the adjacent layers were linked via hydrogen bonds between diethyl 4-pyridylphosphonate and the solvent. Furthermore, the 2D hMOF monolayer nanosheets were obtained easily via a top-down method. More significantly, the quenching mechanism was identified as an axial coordination between the open Fe2+ sites of hMOF nanosheets and fluorophores with 91% quenching efficiency, constituting an excellent signal transduction strategy. The smart use of hMOF monolayer nanosheets as an axial coordination platform could lead to promising applications in signal switching or/and sensing devices.


Assuntos
DNA/análise , Transferência Ressonante de Energia de Fluorescência/métodos , Corantes Fluorescentes/química , Estruturas Metalorgânicas/química , Nanoestruturas/química , DNA/química
9.
Chem Commun (Camb) ; 55(10): 1390-1393, 2019 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-30632550

RESUMO

A facile and mild method was successfully developed to prepare the stable, highly siliceous Ti-UTL zeolite with extra-large pores. The hydroxyl free radical (˙OH) was introduced for the first time to effectively promote the isomorphous substitution of Si for framework Ge under room temperature and neutral conditions, resulting in a stable titanosilicate with an outstanding catalytic activity for oxidative desulfurization.

10.
Dalton Trans ; 46(45): 15778-15788, 2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-29098218

RESUMO

Polycrystalline samples of Ln2CoGe4O12 (Ln = Gd, Tb, Dy, Ho or Er) and LnBCoGe4O12 (B = Sc or Lu) have been prepared and characterised by a combination of magnetometry, 155Gd Mössbauer spectroscopy and, in the case of Tb2CoGe4O12 and TbScCoGe4O12, neutron diffraction. The holmium- and erbium-containing compositions remain paramagnetic down to 2 K, those containing dysprosium behave as spin glasses and the terbium and gadolinium-containing compounds show long-range magnetic order with transition temperatures below 4 K in all cases. The data can be rationalized qualitatively in terms of the interplay between magnetic anisotropy and crystal field effects.

11.
Dalton Trans ; 46(21): 6921-6933, 2017 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-28504800

RESUMO

Polycrystalline samples in the solid solution ZrMn2-xCoxGe4O12 (x = 0.0, 0.5, 1.0, 1.5 and 2.0) have been prepared using the ceramic method and characterised by a combination of magnetometry, X-ray diffraction and neutron diffraction. They all adopt the space group P4/nbm with a ∼ 9.60, c ∼ 4.82 Å and show long-range magnetic order with transition temperatures, TC, in the range 2 ≤ TC/K ≤ 10. The underlying magnetic structure is the same in each case but the ordered spins lie along [001] when x = 0.0 and in the (001) plane for all other compositions. In all cases the magnetically-ordered phase is a weak ferromagnet although the magnitude of the spontaneous magnetisation and the strength of the coercive field are composition-dependent. The magnetic structure can be rationalized by considering the strengths of the interactions along the distinct M-O-Ge-O-M superexchange pathways in the crystal and the observed magnetic structure is entirely consistent with the predictions of ab initio calculations.

12.
Inorg Chem ; 56(5): 2750-2762, 2017 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-28199107

RESUMO

Polycrystalline samples, prepared by a solid-state route, of compositions in the solid solution CeMn2-xCoxGe4O12 (x = 0.0, 0.5, 1.0, 1.5, and 2.0) were characterized by X-ray diffraction, neutron diffraction, and magnetometry. They adopt space group P4/nbm with a ≈ 9.78 and c ≈ 4.85 Å and become anti-ferromagnetic (x = 0.0, 1.5, 2.0) or weakly ferromagnetic (x = 0.5, 1.0) at 4.2 ≤ T ≤ 7.6 K. The ordered moments lie along [001] when x = 0.0 and in the (001) plane otherwise. The unit cell doubles along [001] when x = 1.5 and 2.0 order anti-ferromagnetically, but the doubling is lost when a first-order metamagnetic transition to weak ferromagnetism occurs on the application of a 10 kOe magnetic field. The ordered moments at 1.6 K for x = 0.0 and 2.0 are 4.61(2) and 2.58(2) µB, respectively; the corresponding effective moments in the paramagnetic phase are 5.91 and 5.36 µB.

13.
Artigo em Inglês | MEDLINE | ID: mdl-24070338

RESUMO

A quantitative multi-class analytical method covering more than 226 veterinary drugs and other contaminants in muscle, belonging to different drug families, was developed. The method is based on liquid-liquid extraction, purification by low-temperature clean-up and dispersive solid-phase extraction (D-SPE), and analysis was conducted in two analytical runs by column-switching UPLC coupled with electrospray ionisation and tandem mass spectrometry (UPLC-ESI-MS/MS). For most of the target analytes, the optimised pre-treatment processes led to no significant interference from the sample matrix. The limit of quantification varied from 0.05 to 10 µg kg(-1). Statistical evaluation indicated that average recoveries spiked into pork were in the range from 62.4% to 138.8%, and the relative standard deviations were in the range from 2.8% to 26.6% (intra-day precision). The availability of this method will contribute to a better safety assurance of meat with a significant reduction of both effort and time.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Resíduos de Drogas/análise , Contaminação de Alimentos/análise , Carne/análise , Espectrometria de Massas em Tandem/métodos , Drogas Veterinárias/análise , Animais , Bovinos , China , Músculo Esquelético/química , Reprodutibilidade dos Testes , Suínos
14.
Se Pu ; 30(6): 635-40, 2012 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-23016300

RESUMO

Nitrite and nitrate are common inorganic salts in the diet and drinking water. It is generally believed that excessive intake of these substances may result in methemoglobinemia or other diseases. However, the traditional detection methods for nitrite and nitrate in dairy products restrain their applications to routine analysis due to the presence of certain limitations. In order to solve this problem, an improved national food safety standard method for the determination of nitrite and nitrate in dairy products has been studied. After water extraction, protein precipitation and centrifugation, the supernatant was cleaned up by a solid phase extraction (SPE) column. The eluent mainly composed of sodium hydroxide with acetonitrile as organic modifier. External water mode was used for suppressor. An AS 19 column was used as the analytical column, and the oven temperature was 30 degrees C while the cell temperature was 35 degrees C. The detection wavelength was 225 nm and the injection volume was 200 microL. The results showed that good linearity existed when the concentrations of nitrite and nitrate were between 0.005 -0.50 and 0.05 - 1.50 mg/L respectively. The detection limits of nitrite and nitrate were 0.2 and 0.04 mg/kg respectively when using a conductivity detector; while the values were only 0.02 and 0.01 mg/kg using an ultraviolet (UV) detector. The recoveries were between 84.0% and 104.1% when analyzing dairy products. It is a simple, fast and highly sensitive way for nitrite and nitrate detections.


Assuntos
Cromatografia por Troca Iônica/métodos , Laticínios/análise , Contaminação de Alimentos/análise , Nitratos/análise , Nitritos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...