Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioorg Chem ; 150: 107553, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38901279

RESUMO

The overexpression of FGFR1 is thought to significantly contribute to the progression of triple-negative breast cancer (TNBC), impacting aspects such as tumorigenesis, growth, metastasis, and drug resistance. Consequently, the pursuit of effective inhibitors for FGFR1 is a key area of research interest. In response to this need, our study developed a hybrid virtual screening method. Utilizing KarmaDock, an innovative algorithm that blends deep learning with molecular docking, alongside Schrödinger's Residue Scanning. This strategy led us to identify compound 6, which demonstrated promising FGFR1 inhibitory activity, evidenced by an IC50 value of approximately 0.24 nM in the HTRF bioassay. Further evaluation revealed that this compound also inhibits the FGFR1 V561M variant with an IC50 value around 1.24 nM. Our subsequent investigations demonstrate that Compound 6 robustly suppresses the migration and invasion capacities of TNBC cell lines, through the downregulation of p-FGFR1 and modulation of EMT markers, highlighting its promise as a potent anti-metastatic therapeutic agent. Additionally, our use of molecular dynamics simulations provided a deeper understanding of the compound's specific binding interactions with FGFR1.

2.
J Control Release ; 371: 484-497, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38851537

RESUMO

The precise and targeted delivery of therapeutic agents to the lesion sites remains a major challenge in treating brain diseases represented by ischemic stroke. Herein, we modified liposomes with mesenchymal stem cells (MSC) membrane to construct biomimetic liposomes, termed MSCsome. MSCsome (115.99 ± 4.03 nm) exhibited concentrated accumulation in the cerebral infarcted hemisphere of mice with cerebral ischemia-reperfusion injury, while showing uniform distribution in the two cerebral hemispheres of normal mice. Moreover, MSCsome exhibited high colocalization with damaged nerve cells in the infarcted hemisphere, highlighting its advantageous precise targeting capabilities over liposomes at both the tissue and cellular levels. Leveraging its superior targeting properties, MSCsome effectively delivered Dl-3-n-butylphthalide (NBP) to the injured hemisphere, making a single-dose (15 mg/kg) intravenous injection of NBP-encapsulated MSCsome facilitate the recovery of motor functions in model mice by improving the damaged microenvironment and suppressing neuroinflammation. This study underscores that the modification of the MSC membrane notably enhances the capacity of liposomes for precisely targeting the injured hemisphere, which is particularly crucial in treating cerebral ischemia-reperfusion injury.


Assuntos
Benzofuranos , Sistemas de Liberação de Medicamentos , Lipossomos , Células-Tronco Mesenquimais , Traumatismo por Reperfusão , Animais , Traumatismo por Reperfusão/terapia , Masculino , Benzofuranos/administração & dosagem , Isquemia Encefálica/terapia , Materiais Biomiméticos/química , Materiais Biomiméticos/administração & dosagem , Camundongos , Camundongos Endogâmicos C57BL , Transplante de Células-Tronco Mesenquimais/métodos
3.
Adv Healthc Mater ; : e2400704, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38781020

RESUMO

The hybridization of liposome with stem cell membranes is an emerging technology to prepare the nanovehicle with the capacity of disease-responsive targeting. However, the long-term storage of this hybrid liposome has received limited attention in the literature, which is essential for its potential applicability in the clinic. Therefore, the preservation of long-term activity of stem cell-hybrid liposome using freeze-drying is investigated in the present study. Mesenchymal stem cell-hybrid liposome is synthesized and its feasibility for freeze-drying under different conditions is examined. Results reveal that pre-freezing the hybrid liposome at -20 °C in Tris buffer solution (pH 7.4) containing 10% trehalose can well preserve the liposomal structure for at least three months. Notably, major membrane proteins on the hybrid liposome are protected in this formulation and CXCR4-associated targeting capacity is maintained both in vitro and in vivo. Consequently, the hybrid liposome stored for three months demonstrates a comparable tumor inhibition as the fresh-prepared one. The present study provides the first insights into the long-term storage of stem cell hybrid liposome using lyophilization, which may make an important step forward in enhancing the long-term stability of these promising biomimetic nanovehicle and ease the logistics and the freeze-storage in the potential clinical applications.

4.
Arch Pharm (Weinheim) ; : e2400066, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38809025

RESUMO

Oncogenic overexpression or activation of C-terminal Src kinase (CSK) has been shown to play an important role in triple-negative breast cancer (TNBC) progression, including tumor initiation, growth, metastasis, drug resistance. This revelation has pivoted the focus toward CSK as a potential target for novel treatments. However, until now, there are few inhibitors designed to target the CSK protein. Responding to this, our research has implemented a comprehensive virtual screening protocol. By integrating energy-based screening methods with AI-driven scoring functions, such as Attentive FP, and employing rigorous rescoring methods like Glide docking and molecular mechanics generalized Born surface area (MM/GBSA), we have systematically sought out inhibitors of CSK. This approach led to the discovery of a compound with a potent CSK inhibitory activity, reflected by an IC50 value of 1.6 nM under a homogeneous time-resolved fluorescence (HTRF) bioassay. Subsequently, molecule 2 exhibits strong growth inhibition of MD anderson - metastatic breast (MDA-MB) -231, Hs578T, and SUM159 cells, showing a level of growth inhibition comparable to that observed with dasatinib. Treatment with molecule 2 also induced significant G1 phase accumulation and cell apoptosis. Furthermore, we have explored the explicit binding interactions of the compound with CSK using molecular dynamics simulations, providing valuable insights into its mechanism of action.

5.
ACS Nano ; 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38335121

RESUMO

The limited therapeutic outcomes and severe systemic toxicity of chemotherapy remain major challenges to the current clinical antitumor therapeutic regimen. Tumor-targeted drug delivery that diminishes the undifferentiated systemic distribution is a practical solution to ameliorating systemic toxicity. However, the tumor adaptive immune microenvironment still poses a great threat that compromises the therapeutic efficacy of chemotherapy by promoting the tolerance of the tumor cells. Herein, a pluripotential neutrophil-mimic nanovehicle (Neutrosome(L)) composed of an activated neutrophil membrane-incorporated liposome is proposed to modulate the immune microenvironment and synergize antitumor chemotherapy. The prominent tumor targeting capability inherited from activated neutrophils and the improved tumor penetration ability of Neutrosome(L) enable considerable drug accumulation in tumor tissues (more than sixfold that of free drug). Importantly, Neutrosome(L) can modulate the immune microenvironment by restricting neutrophil infiltration in tumor tissue, which may be attributed to the neutralization of inflammatory cytokines, thus potentiating antitumor chemotherapy. As a consequence, the treatment of cisplatin-loaded Neutrosome(L) performs prominent tumor suppression effects, reduces systemic drug toxicity, and prolongs the survival period of tumor-bearing mice. The pluripotential neutrophil-mimic nanovehicle proposed in this study can not only enhance the tumor accumulation of chemotherapeutics but also modulate the immune microenvironment, providing a compendious strategy for augmented antitumor chemotherapy.

6.
Nat Commun ; 14(1): 5781, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37723135

RESUMO

The use of exogenous mitochondria to replenish damaged mitochondria has been proposed as a strategy for the treatment of pulmonary fibrosis. However, the success of this strategy is partially restricted by the difficulty of supplying sufficient mitochondria to diseased cells. Herein, we report the generation of high-powered mesenchymal stem cells with promoted mitochondrial biogenesis and facilitated mitochondrial transfer to injured lung cells by the sequential treatment of pioglitazone and iron oxide nanoparticles. This highly efficient mitochondrial transfer is shown to not only restore mitochondrial homeostasis but also reactivate inhibited mitophagy, consequently recovering impaired cellular functions. We perform studies in mouse to show that these high-powered mesenchymal stem cells successfully mitigate fibrotic progression in a progressive fibrosis model, which was further verified in a humanized multicellular lung spheroid model. The present findings provide a potential strategy to overcome the current limitations in mitochondrial replenishment therapy, thereby promoting therapeutic applications for fibrotic intervention.


Assuntos
Células-Tronco Mesenquimais , Fibrose Pulmonar , Animais , Camundongos , Fibrose Pulmonar/terapia , Biogênese de Organelas , Mitocôndrias , Homeostase
7.
Eur J Pharm Biopharm ; 191: 205-218, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37683898

RESUMO

Soybean phospholipid was used as an amphiphilic material to form reverse micelles (RMs) in medium glycerol monolinoleate (Maisine) with Exenatide (EXT.) encapsulated in the polar core formed by the hydrophilic part of phospholipid. Cremopher RH40 and caprylocaproyl macrogol-8 glycerides EP/caprylocaproyl polyoxyl-8 glycerides NF (Labrasol) were added as surfactants to prepare reverse micelles-self emulsifying drug delivery system (RMs-SEDDS). On this basis, oil in water (O/W) emulsion was further prepared. By adding DOTAP, the surface of the emulsion was positively charged. Finally, hyaluronic acid wrapping in the outermost layer by electrostatic adsorption and reverse micelles-O/W-sodium hyaluronate (RMs-O/W-HA) nanoparticles containing Exenatide were prepared. RMs-SEDDS was spherical with an average particle size of 213.6 nm and RMs-O/W-HA was double-layered spherical nanoparticle with an average particle size of 309.2 nm. HA coating enhanced the adhesion of nanoparticles (NPs), and RMs-O/W-HA increased cellular uptake through CD44-mediated endocytosis. Pharmacodynamics results showed that RMs-SEDDS and RMs-O/W-HA could reduce blood glucose in type 2 diabetic rats, protect pancreatic ß cells to a certain extent, and relieve insulin resistance and hyperlipemia complications with good safety.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Nanopartículas , Ratos , Animais , Micelas , Ácido Hialurônico , Exenatida , Emulsões , Diabetes Mellitus Experimental/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Glicerídeos , Fosfolipídeos
9.
Adv Healthc Mater ; 12(23): e2300376, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37161587

RESUMO

Pulmonary inflammation is one of the most reported tissue inflammations in clinic. Successful suppression of inflammation is vital to prevent further inevitably fatal lung degeneration. Glucocorticoid hormone, such as methylprednisolone (MP), is the most applied strategy to control the inflammatory progression yet faces the challenge of systemic side effects caused by the requirement of large-dosage and frequent administration. Highly efficient delivery of MP specifically targeted to inflammatory lung sites may overcome this challenge. Therefore, the present study develops an inflammation-targeted biomimetic nanovehicle, which hybridizes the cell membrane of mesenchymal stem cell with liposome, named as MSCsome. This hybrid nanovehicle shows the ability of high targeting specificity toward inflamed lung cells, due to both the good lung endothelium penetration and the high uptake by inflamed lung cells. Consequently, a single-dose administration of this MP-loaded hybrid nanovehicle achieves a prominent treatment of lipopolysaccharide-induced lung inflammation, and negligible treatment-induced side effects are observed. The present study provides a powerful inflammation-targeted nanovehicle using biomimetic strategy to solve the current challenges of targeted inflammation intervention.


Assuntos
Inflamação , Pneumonia , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Pneumonia/tratamento farmacológico , Pneumonia/metabolismo , Metilprednisolona/metabolismo , Metilprednisolona/farmacologia , Metilprednisolona/uso terapêutico , Pulmão/metabolismo , Lipossomos/farmacologia
11.
Biomater Sci ; 10(15): 4324-4334, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35775458

RESUMO

Phagocytosis checkpoints, especially targeting CD47, have shown encouraging therapeutic effects. However, there are currently many shortcomings and challenges with immune checkpoint blockades (ICBs). Inspired by the phenomenon of molecular self-assembly, we modify the CD47 targeting peptide (4N1K) onto the self-assembled peptide FY4, as well as the concatenation of PEG at the other terminal via the AZO group to construct hypoxia-responsive nanoparticles (PEG-AZO-FY4-4N1K, PAP NPs), utilizing the peptide as a part of the anti-tumor therapy machine. After degradation, PAP NPs can self-assemble to form fibrous networks and anchor CD47 on the surface of tumor cells, promoting their recognition and phagocytosis by macrophages and relieving immune escape. Self-assembled peptides can interweave on the surface of tumor cells, fully exploiting their morphological advantages to impede normal cell interaction and metastasis. The PAP NPs work synergistically with Doxorubicin (DOX) to further maximize the efficacy of chemoimmunotherapy. In conclusion, this strategy pioneers the progress of self-assembled peptides in biomedicine and promises a novel breakthrough in the development of checkpoint inhibitor therapies.


Assuntos
Nanopartículas , Neoplasias , Antígeno CD47 , Humanos , Imunoterapia , Nanopartículas/química , Neoplasias/patologia , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Fagocitose
12.
Polymers (Basel) ; 14(11)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35683851

RESUMO

Oral delivery of therapeutic peptides has been a daunting challenge due to poor transport across the tight junctions and susceptibility to enzymatic degradation in the gastrointestinal tract. Numerous advancement in nanomedicine has been made for the effective delivery of protein and peptide. Owing to the superior performance of chitosan in opening intercellular tight junctions of epithelium and excellent mucoadhesive properties, chitosan-based nanocarriers have recently garnered considerable attention, which was formulated in this paper to orally deliver the GLP-1 drug (Exenatide). Against this backdrop, we used chitosan (CS) polymers to encapsulate the exenatide, sodium tripolyphosphate (TPP) as the cross-linking agent and coated the exterior with sodium alginate (ALG) to impart the stability in an acidic environment. The chitosan/alginate nanoparticles (CS-TPP-ALG) functioned as a protective exenatide carrier, realized efficient cellular uptake and controlled release, leading to a steady hypoglycemic effect and a good oral bioavailability in vivo. Trimethyl chitosan (TMC), a chitosan derivative with stronger positive electrical properties was additionally selected as a substitute for chitosan to construct the TMC-TPP-ALG nanoparticle, and its oral peptide delivery capacity was explored in terms of both characterization and pharmacodynamics studies. Overall, our study demonstrated that functional chitosan/alginate nanoparticles can protect proteins from enzymatic degradation and enhance oral absorption, which presents important research value and application prospects.

13.
Int J Pharm ; 623: 121918, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35716973

RESUMO

Hydroxy-safflower yellow A (HSYA) is the chief component of safflower against myocardial ischemia (MI), and belongs to biopharmaceutics classification system (BCS) III drugs. Its structure contains multiple hydroxyl groups, contributing to its high polarity and poor oral bioavailability. The main objective of this study was to probe the potential of oral penetration enhancer n-[8-(2-hydroxybenzoyl) amino] sodium octanoate (SNAC) and cationic copolymer Eudragit®EPO (EPO) to promote absorption of HSYA. HSYA composites (SNAC-HSYA-EPO) were formed by hydrogen bonding and van der Waals force. SNAC-HSYA-EPO has biocompatibility, and can improve the membrane fluidity, uptake, transport, and penetration of Caco-2 cells. The mechanism of promoting of SNAC-HSYA-EPO may be related to energy and P-glycoprotein (P-gp) when compared with the inhibitor NaN3 and verapamil group. In the pharmacokinetic (PK) results, SNAC-HSYA-EPO significantly improved oral bioavailability. Pharmacodynamics (PD) results determined that SNAC-HSYA-EPO could improve the symptoms of MI. The mechanism of the SNAC-HSYA-EPO anti-MI is related to alleviating inflammation and anti-apoptosis to protect the heart. In summary, SNAC-HSYA-EPO prepared in this study possessed a complete appearance, high recombination rate and excellent oral permeability promoting ability. SNAC-HSYA-EPO has the potential to improve oral bioavailability and further enhance the anti-MI effect of HSYA.


Assuntos
Chalcona , Doença da Artéria Coronariana , Isquemia Miocárdica , Células CACO-2 , Chalcona/análogos & derivados , Chalcona/farmacologia , Humanos , Isquemia , Isquemia Miocárdica/tratamento farmacológico , Permeabilidade
14.
J Nanobiotechnology ; 20(1): 49, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35073914

RESUMO

A widely established prodrug strategy can effectively optimize the unappealing properties of therapeutic agents in cancer treatment. Among them, lipidic prodrugs extremely uplift the physicochemical properties, site-specificity, and antitumor activities of therapeutic agents while reducing systemic toxicity. Although great perspectives have been summarized in the progress of prodrug-based nanoplatforms, no attention has been paid to emphasizing the rational design of small-molecule lipidic prodrugs (SLPs). With the aim of outlining the prospect of the SLPs approach, the review will first provide an overview of conjugation strategies that are amenable to SLPs fabrication. Then, the rational design of SLPs in response to the physiological barriers of chemotherapeutic agents is highlighted. Finally, their biomedical applications are also emphasized with special functions, followed by a brief introduction of the promising opportunities and potential challenges of SLPs-based drug delivery systems (DDSs) in clinical application.


Assuntos
Antineoplásicos , Pró-Fármacos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Sistemas de Liberação de Medicamentos , Lipídeos/química , Nanomedicina , Pró-Fármacos/química
15.
ACS Nano ; 15(12): 19468-19479, 2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34859990

RESUMO

Nanomedicine-based photodynamic therapy (PDT) for melanoma treatment has attracted great attention. However, the complex design of polymer nanoparticles and high doses of photosensitizers used in intravenous injections (for sufficient accumulation of drugs in tumor lesions) pose a huge challenge to the commercialization and further clinical application. Herein, we fabricated the carrier-free nanoassemblies of a chlorin e6 (L-Ce6 NAs)-integrated fast-dissolving microneedles patch (L-Ce6 MNs) enriching only about 3 µg of Ce6 in the needle tips via a facile fabrication method. The L-Ce6 MNs had sufficient mechanical strength to penetrate the skin and facilitated the transportation of L-Ce6 NAs to a depth of 200-500 µm under the skin, thereby achieving efficient and accurate drug delivery to tumor lesions. In a xenograft mouse melanoma model, the L-Ce6 MNs-based PDT with low dose of Ce6 (0.12 mg/kg) exerted efficient ablation of the primary lesions in situ through reactive oxygen species (ROS) generation. More importantly, a significant abscopal effect was also elicited by activating immunogenic cell death (ICD) and releasing danger-associated molecular patterns (DAMPs), which in turn promoted dendritic cells (DCs) maturation and the subsequent antigen presentation, thereby facilitating the T-cell-mediated immune response without synergetic immunotherapies. Collectively, our findings indicate the facile, controllable, and fast-dissolving microneedles patch with a low dose of photosensitizers presented great therapeutic potential for enhanced photoimmunotherapy.


Assuntos
Melanoma , Nanopartículas , Fotoquimioterapia , Porfirinas , Animais , Linhagem Celular Tumoral , Melanoma/tratamento farmacológico , Camundongos , Fármacos Fotossensibilizantes/uso terapêutico , Porfirinas/uso terapêutico
16.
Nanotechnology ; 33(12)2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-34874301

RESUMO

Cationic polyethylenimine (PEI) is regarded as the 'golden standard' of non-viral gene vectors. However, the superiority of PEI with high positive charge density also induces its major drawback of cytotoxicity, which restricts its application for an effective and safe gene delivery to stem cells. To redress this shortcoming, herein, a magnetic gene complex containing uniform iron oxide nanoparticles (UIONPs), plasmid DNA, and free PEI is prepared through electrostatic interactions for the gene delivery to bone marrow-derived mesenchymal stem cells (BM-MSCs). Results show that UIONPs dramatically promote the gene delivery to BM-MSCs using the assistance of magnetic force. In addition, decreasing the free PEI nitrogen to DNA phosphate (N/P) ratio from 10 to 6 has little adverse impact on the transgene expression levels (over 300 times than that of PEI alone at the N/P ratio of 6) and significantly reduces the cytotoxicity to BM-MSCs. Further investigations confirmed that the decrease of free PEI has little influence on the cellular uptake after applying external magnetic forces, but that the reduced positive charge density decreases the cytotoxicity. The present study demonstrates that magnetic gene delivery not only contributes to the enhanced gene expression but also helps to reduce the required amount of PEI, providing a potential strategy for an efficient and safe gene delivery to stem cells.


Assuntos
Técnicas de Transferência de Genes , Nanopartículas Magnéticas de Óxido de Ferro , Células-Tronco Mesenquimais , Polietilenoimina , Animais , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Nanopartículas Magnéticas de Óxido de Ferro/química , Nanopartículas Magnéticas de Óxido de Ferro/toxicidade , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Polietilenoimina/química , Polietilenoimina/toxicidade , Ratos , Ratos Sprague-Dawley
17.
Theranostics ; 11(17): 8254-8269, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34373740

RESUMO

Background: Mesenchymal stem cells (MSCs) have been applied as a promising vehicle for tumour-targeted delivery of suicide genes in the herpes simplex virus thymidine kinase (HSV-tk)/ganciclovir (GCV) suicide gene therapy against malignant gliomas. The efficiency of this strategy is largely dependent on the bystander effect, which relies on high suicide gene expression levels and efficient transportation of activated GCV towards glioma cells. However, up to now, the methods to enhance the bystander effect of this strategy in an efficient and safe way are still lacking and new approaches to improve this therapeutic strategy are required. Methods: In this study, MSCs were gene transfected using magnetosome-like ferrimagnetic iron oxide nanochains (MFIONs) to highly express HSV-tk. Both the suicide and bystander effects of HSV-tk expressed MSCs (MSCs-tk) were quantitatively evaluated. Connexin 43 (Cx43) expression by MSCs and glioma cells was measured under different treatments. Intercellular communication between MSCs and C6 glioma cells was examined using a dye transfer assay. Glioma tropism and the bio-distribution of MSCs-tk were observed. Anti-tumour activity was investigated in the orthotopic glioma of rats after intravenous administration of MSCs-tk followed by intraperitoneal injection of GCV. Results: Gene transfection using MFIONs achieved sufficient expression of HSV-tk and triggered Cx43 overexpression in MSCs. These Cx43 overexpressing MSCs promoted gap junction intercellular communication (GJIC) between MSCs and glioma cells, resulting in significantly inhibited growth of glioma through an improved bystander effect. Outstanding tumour targeting and significantly prolonged survival with decreased tumour size were observed after the treatment using MFION-transfected MSCs in glioma model rats. Conclusion: Our results show that iron oxide nanoparticles have the potential to improve the suicide gene expression levels of transfected MSCs, while promoting the GJIC formation between MSCs and tumour cells, which enhances the sensitivity of glioma cells to HSV-tk/GCV suicide gene therapy.


Assuntos
Terapia Genética/métodos , Glioma , Nanopartículas Magnéticas de Óxido de Ferro/administração & dosagem , Células-Tronco Mesenquimais/metabolismo , Animais , Antivirais/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Conexina 43/genética , Conexina 43/metabolismo , Ganciclovir/farmacologia , Expressão Gênica/efeitos dos fármacos , Genes Transgênicos Suicidas , Glioma/tratamento farmacológico , Glioma/genética , Humanos , Ratos , Simplexvirus/genética , Timidina Quinase/genética , Timidina Quinase/farmacologia , Transfecção/métodos , Carga Tumoral/efeitos dos fármacos
18.
Pharmaceutics ; 13(5)2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34069645

RESUMO

Inspired by molecular self-assembly, which is ubiquitous in natural environments and biological systems, self-assembled peptides have become a research hotspot in the biomedical field due to their inherent biocompatibility and biodegradability, properties that are afforded by the amide linkages forming the peptide backbone. This review summarizes the biological advantages, principles, and design strategies of self-assembled polypeptide systems. We then focus on the latest advances in in situ self-assembly of polypeptides in medical applications, such as oncotherapy, materials science, regenerative medicine, and drug delivery, and then briefly discuss their potential challenges in clinical treatment.

19.
Int J Pharm ; 602: 120598, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33862129

RESUMO

The transdermal delivery of macromolecular drugs has become one of the focused topics in pharmaceutical research since it enables highly specific and effective delivery, while avoiding the pain and needle phobia associated with injection, or incidences like drug degradation and low bioavailability of oral administration. However, the passive absorption of macromolecular drugs via skin is highly restricted by the stratum corneum owing to high molecular weight. Therefore, various strategies have been extensively developed and conducted to facilitate the transdermal delivery of macromolecular drugs, among which, mechanical force-assisted techniques occupy dominant positions. Such techniques include ultrasound, needle-free jet injection, temporary pressure and microneedles. In this review, we focus on recent transdermal enhancing strategies utilizing mechanical force, and summarize their mechanisms, advantages, limitations and clinical applications respectively.


Assuntos
Preparações Farmacêuticas , Administração Cutânea , Sistemas de Liberação de Medicamentos , Agulhas , Pele
20.
Pharm Dev Technol ; 26(1): 21-29, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33070673

RESUMO

Multidrug resistance (MDR) is a serious challenge in chemotherapy and also a major threat to breast cancer treatment. As an intracellular energy factory, mitochondria provide energy for drug efflux and are deeply involved in multidrug resistance. Mitochondrial targeted delivery of doxorubicin can overcome multidrug resistance by disrupting mitochondrial function. By incorporating a reactive oxygen species (ROS)-responsive hydrophobic group into the backbone structure of hyaluronic acid - a natural ligand for the highly expressed CD44 receptor on tumor surfaces, a novel ROS-responsive and CD44-targeting nano-carriers was constructed. In this study, mitochondria-targeted triphenylphosphine modified-doxorubicin (TPP-DOX) and amphipathic ROS-responsive hyaluronic acid derivatives (HA-PBPE) were synthesized and confirmed by 1H NMR. The nanocarriers TPP-DOX @ HA-PBPE was prepared in a regular shape and particle size of approximately 200 nm. Compared to free DOX, its antitumor activity in vitro and tumor passive targeting in vivo has been enhanced. The ROS-responsive TPP-DOX@HA-PBPE nanocarriers system provide a promising strategy for the reverse of MDR and efficient delivery of doxorubicin derivatives into drug-resistant cancer cells.


Assuntos
Antineoplásicos/metabolismo , Neoplasias da Mama/metabolismo , Doxorrubicina/metabolismo , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Nanopartículas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Neoplasias da Mama/tratamento farmacológico , Relação Dose-Resposta a Droga , Doxorrubicina/administração & dosagem , Doxorrubicina/química , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Resistência a Múltiplos Medicamentos/fisiologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/fisiologia , Feminino , Humanos , Células MCF-7 , Camundongos , Camundongos Nus , Nanopartículas/administração & dosagem , Nanopartículas/química , Espécies Reativas de Oxigênio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...