Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicology ; 502: 153734, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38290605

RESUMO

Silver nanoparticles (AgNPs) are used increasingly often in the biomedical field, but their potential deleterious effects on the cardiovascular system remain to be elucidated. The primary aim of this study was to evaluate the toxic effects, and the underlying mechanisms of these effects, of AgNPs on human umbilical vein endothelial cells (HUVECs), as well as the protective role of N-acetylcysteine (NAC) against cytotoxicity induced by AgNPs. In this study, we found that exposure to AgNPs affects the morphology and function of endothelial cells which manifests as decreased cell proliferation, migration, and angiogenesis ability. Mechanistically, AgNPs can induce excessive cellular production of reactive oxygen species (ROS), leading to damage to cellular sub-organs such as mitochondria and lysosomes. More importantly, our data suggest that AgNPs causes autophagy defect, inhibits mitophagy, and finally activates the mitochondria-mediated apoptosis signaling pathway and evokes cell death. Interestingly, treatment with ROS scavenger-NAC can effectively suppress AgNP-induced endothelial damage.Our results indicate that ROS-mediated mitochondria-lysosome injury and autophagy dysfunction are potential factors of endothelial toxicity induced by AgNPs. This study may provide new evidence for the cardiovascular toxicity of AgNPs and serve as a reference for the safe use of nanoparticles(NPs) in the future.


Assuntos
Acetilcisteína , Nanopartículas Metálicas , Humanos , Espécies Reativas de Oxigênio/metabolismo , Acetilcisteína/farmacologia , Acetilcisteína/metabolismo , Prata/toxicidade , Nanopartículas Metálicas/toxicidade , Autofagia , Células Endoteliais da Veia Umbilical Humana , Lisossomos/metabolismo , Mitocôndrias/metabolismo , Sobrevivência Celular
2.
Sci Rep ; 13(1): 1999, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36737649

RESUMO

Peroxisome proliferator-activated receptor gamma (PPAR γ) plays key roles in the development, physiology, reproduction, and homeostasis of organisms. Its expression and activity are regulated by various posttranslational modifications. We previously reported that E3 ubiquitin ligase muscle ring finger protein 2 (MuRF2) inhibits cardiac PPAR γ1 protein level and activity, eventually protects heart from diabetic cardiomyopathy; furthermore, by GST-pulldown assay, we found that MuRF2 modifies PPAR γ1 via poly-ubiquitination and accelerates PPAR γ1 proteasomal degradation. However, the key ubiquitination site on PPAR γ that MuRF2 targets for remains unclear. In the present study, we demonstrate that lysine site 222 is the receptor of MuRF2-mediated PPAR γ1 ubiquitination modification, using prediction of computational models, immunoprecipitation, ubiquitination assays, cycloheximide chasing assay and RT-qPCR. Our findings elucidated the underlying details of MuRF2 prevents heart from diabetic cardiomyopathy through the PPAR γ1 regulatory pathway.


Assuntos
Cardiomiopatias Diabéticas , Lisina , Humanos , Lisina/metabolismo , Cardiomiopatias Diabéticas/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , Músculos/metabolismo , Ubiquitinação , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
3.
Bioengineered ; 13(4): 11106-11121, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35470774

RESUMO

Cardiac remodeling is the primary pathological feature of chronic heart failure. Prompt inhibition of remodeling in acute coronary syndrome has been a standard procedure, but the morbidity and mortality are still high. Exploring the characteristics of ischemia in much earlier stages and identifying its biomarkers are essential for introducing novel mechanisms and therapeutic strategies. Metabolic and structural remodeling of mitochondrion is identified to play key roles in ischemic heart disease. The mitochondrial metabolic features in early ischemia have not previously been described. In the present study, we established a mouse heart in early ischemia and explored the mitochondrial metabolic profile using metabolomics analysis. We also discussed the role of mitochondrion in the global cardiac metabolism. Transmission electron microscopy revealed that mitochondrial structural injury was invoked at 8 minutes post-coronary occlusion. In total, 75 metabolites in myocardium and 26 in mitochondria were screened out. About 23% of the differentiated metabolites in mitochondria overlapped with the differentiated metabolites in myocardium; Total 81% of the perturbed metabolic pathway in mitochondria overlapped with the perturbed pathway in myocardium, and these pathways accounted for 50% of the perturbed pathway in myocardium. Purine metabolism was striking and mechanically important. In conclusion, in the early ischemia, myocardium exacerbated metabolic remodeling. Mitochondrion was a contributor to the myocardial metabolic disorder. Purine metabolism may be a potential biomarker for early ischemia diagnosis. Our study introduced a perspective for prompt identification of ischemia.


Assuntos
Isquemia Miocárdica , Animais , Biomarcadores/metabolismo , Isquemia/metabolismo , Camundongos , Mitocôndrias/metabolismo , Isquemia Miocárdica/tratamento farmacológico , Isquemia Miocárdica/metabolismo , Miocárdio/metabolismo , Purinas/metabolismo
4.
Exp Ther Med ; 23(1): 85, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34938367

RESUMO

Mitochondrial malfunction leads to the remodeling of myocardial energy metabolism during myocardial ischemia (MI). However, the alterations to the mitochondrial proteome profile during this period has not yet been clarified. An acute MI model was established by high position ligation of the left anterior descending artery in 8-week-old C57BL/6N mice. After 15 min of ligation, the animals were euthanized, and their hearts were collected. The myocardial ultrastructure was observed using transmission electron microscopy (TEM). The cardiac mitochondrial proteome profile was analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and bioinformatics analyses. TEM showed that the outer membrane of the mitochondria was dissolved, and the inner membrane (cristae) was corrupted and broken down extensively in the MI group. The mitochondrial membrane potential was decreased. More than 1,700 mitochondrial proteins were identified by LC-MS/MS analysis, and 119 were differentially expressed. Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes functional enrichment analysis showed that endopeptidase activity regulation, the mitochondrial inner membrane, oxidative phosphorylation, the hypoxia-inducible factor-1 signaling pathway, the pentose phosphate pathway and the peroxisome proliferator-activated receptor signaling pathway were involved in the pathophysiological process in the early stage of acute MI. Extensive and substantial changes in the mitochondrial proteins as well as mitochondrial microstructural damage occur in the early stages of acute MI. In the present study, the series of proteins crucially involved in the pathways of mitochondrial dysfunction and metabolism were identified. Further studies are needed to clarify the roles of these proteins in myocardial metabolism remodeling during acute MI injury.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...