Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Nanomedicine ; 19: 4589-4605, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38799695

RESUMO

Background: Medical imaging modalities, such as magnetic resonance imaging (MRI), ultrasound, and fluorescence imaging, have gained widespread acceptance in clinical practice for tumor diagnosis. Each imaging modality has its own unique principles, advantages, and limitations, thus necessitating a multimodal approach for a comprehensive disease understanding of the disease process. To enhance diagnostic precision, physicians frequently integrate data from multiple imaging modalities, driving research advancements in multimodal imaging technology research. Methods: In this study, hematoporphyrin-poly (lactic acid) (HP-PLLA) polymer was prepared via ring-opening polymerization and thoroughly characterized using FT-IR, 1H-NMR, XRD, and TGA. HP-PLLA based nanoparticles encapsulating perfluoropentane (PFP) and salicylic acid were prepared via emulsion-solvent evaporation. Zeta potential and mean diameter were assessed using DLS and TEM. Biocompatibility was evaluated via cell migration, hemolysis, and cytotoxicity assays. Ultrasonic imaging was performed with a dedicated apparatus, while CEST MRI was conducted using a 7.0 T animal scanner. Results: We designed and prepared a novel dual-mode nanoimaging probe SA/PFP@HP-PLLA NPs. PFP enhanced US imaging, while salicylic acid bolstered CEST imaging. With an average size of 74.43 ± 1.12 nm, a polydispersity index of 0.175 ± 0.015, and a surface zeta potential of -64.1 ± 2.11 mV. These NPs exhibit excellent biocompatibility and stability. Both in vitro and in vivo experiments confirmed the SA/PFP@HP-PLLA NP's ability to improve tumor characterization and diagnostic precision. Conclusion: The SA/PFP@HP-PLLA NPs demonstrate promising dual-modality imaging capabilities, indicating their potential for preclinical and clinical use as a contrast agent.


Assuntos
Fluorocarbonos , Hematoporfirinas , Imageamento por Ressonância Magnética , Nanopartículas , Poliésteres , Ácido Salicílico , Fluorocarbonos/química , Imageamento por Ressonância Magnética/métodos , Animais , Poliésteres/química , Nanopartículas/química , Humanos , Ácido Salicílico/química , Ácido Salicílico/farmacocinética , Ácido Salicílico/administração & dosagem , Hematoporfirinas/química , Hematoporfirinas/farmacocinética , Hematoporfirinas/farmacologia , Camundongos , Ultrassonografia/métodos , Meios de Contraste/química , Meios de Contraste/farmacocinética , Linhagem Celular Tumoral , Imagem Multimodal/métodos , Pentanos
2.
Naunyn Schmiedebergs Arch Pharmacol ; 397(3): 1551-1559, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37668687

RESUMO

Lycorine is a naturally active alkaloid that has been shown to have inhibitory effects on a variety of cancers. However, the underlying mechanism of lycorine in the treatment of glioblastoma (GBM) is unclear. In this study, we investigated the mechanism of lycorine in the treatment of GBM based on network pharmacology and molecular docking. Lycorine-related targets overlapped with GBM-related targets to obtain intersections that represent potential anti-GBM targets for lycorine. The protein-protein interaction (PPI) network was constructed using the STRING online database and analyzed by Cytoscape software, and 10 key target genes (AKT1, SRC, HSP90AA1, HRAS, MMP9, BCL2L1, IGF1, MAPK14, STAT1, and KDR) were obtained, which played an important role in the therapeutic effect of lycorine on GBM. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that lycorine acts on GBM by multiple pathways, including inducing apoptosis and reactive oxygen species production. The molecular docking results showed that lycorine had strong binding efficiency with the 10 key genes. In addition, we found that the use of lycorine-induced apoptosis in U-87 MG glioblastoma cells. Here, the mechanism of action of lycorine against GBM was elucidated and verified by experiments, which provided evidence support for its clinical application.


Assuntos
Alcaloides de Amaryllidaceae , Glioblastoma , Fenantridinas , Humanos , Simulação de Acoplamento Molecular , Glioblastoma/tratamento farmacológico , Farmacologia em Rede , Alcaloides de Amaryllidaceae/farmacologia , Alcaloides de Amaryllidaceae/uso terapêutico
3.
J Biomater Appl ; 36(6): 1064-1075, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34338057

RESUMO

Due to the low bioavailability and severe toxic side effects caused by the lack of selectivity of traditional chemotherapy drugs, the targeted delivery of chemotherapy drugs has become the key to tumor treatment. The activity and transmembrane potential of mitochondria in cancer cells were significantly higher than that of normal cells, making them a potential target for chemotherapeutic drug delivery. In this study, triphenylphosphine (TPP) based mitochondria targeting polylactic acid (PLLA) nanoparticles (TPP-PLLA NPs) were synthesized to improve the delivery efficiency of anticancer drugs. The carrier material was characterized by 1H NMR and FT-IR and 7-hydroxyl coumarin (7-HC) was successfully loaded into TPP-PLLA to form 7-HC/TPP-PLLA NPs. Further studies showed that TPP-PLLA NPs were primarily accumulated in the mitochondrial and 7-HC/TPP-PLLA NPs had higher antitumor activity. Taken together, our results indicated that TPP-PLLA NPs could be a promising mitochondria-targeted drug delivery system for cancer therapy.


Assuntos
Antineoplásicos , Nanopartículas , Antineoplásicos/química , Linhagem Celular Tumoral , Cumarínicos , Portadores de Fármacos/farmacologia , Sistemas de Liberação de Medicamentos , Mitocôndrias , Nanopartículas/química , Compostos Organofosforados , Poliésteres , Espectroscopia de Infravermelho com Transformada de Fourier
4.
J Biomater Appl ; 36(4): 613-625, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33899561

RESUMO

In this experiment, a new amphiphilic chitosan-poly(lactide) graft copolymer was synthesized and characterized by IR, 1H-NMR, XRD, TGA. The obtained chitosan-poly (lactide) graft copolymer was used as the matrix material to prepare nanodroplets (NDs) encapsulating with liquid PFP by double-emulsion and solvent evaporation method. The resulting NDs were characterized by photon correlation spectroscopy and transmission electron microscopy (TEM). The biocompatibility was explored by cytotoxicity assay, cell migration assay and blood biochemistry analysis. The experiments of ultrasonic imaging in vitro and in vivo were carried out with a B-mode clinical ultrasound imaging system. The results of FI-IR and 1H-NMR confirmed the successful grafting reaction of polylactic acid(PLLA) to chitosan with a graft rate of 365%. The average size of the NDs was 101.1 ± 2.7 nm, with the polydispersity index (PDI) of 0.127 ± 0.020, and the zeta potential was -31.8 ± 1.5 mV. From the TEM results, NDs were highly dispersed and had a spherical shape with a distinct capsule structure. The NDs exhibited good stability during storage at 4°C. The NDs solution with different concentrations did not affect cell growth and showed good biocompatibility in cytotoxicity, cell migration and blood biochemistry studies. Under the irradiation of ultrasonic waves, the NDs formed an ultrasonic high signal, which could significantly enhance the ultrasound imaging of tumor tissue in vivo. Taken together, the NDs hold great potential for ultrasound imaging as a nanosized contrast agent.


Assuntos
Quitosana/química , Nanopartículas/química , Poliésteres/química , Polímeros/química , Transplantes , Ultrassonografia/métodos , Animais , Materiais Biocompatíveis , Linhagem Celular Tumoral , Meios de Contraste/química , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...