Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 4547, 2024 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402284

RESUMO

The increasing number of plant mitochondrial DNA genomes (mtDNA) sequenced reveals the extent of transfer from both chloroplast DNA genomes (cpDNA) and nuclear DNA genomes (nDNA). This study created a library and assembled the chloroplast and mitochondrial genomes of the leafy sweet potato better to understand the extent of mitochondrial and chloroplast gene transfer. The full-length chloroplast genome of the leafy sweet potato (OM808940) is 161,387 bp, with 132 genes annotated, including 87 protein-coding genes, 8 rRNA genes, and 37 tRNA genes. The mitochondrial genome (OM808941) was 269,578 bp in length and contained 69 functional genes, including 39 protein-coding genes, 6 rRNA genes, and 24 tRNA genes. 68 SSR loci were found in the leafy sweet potato organelle genome, including 54 in the chloroplast genome and 14 in the mitochondria genome. In the sweet potato mitochondrial genome, most genes have RNA editing sites, and the conversion ratio from hydrophilic amino acids to hydrophobic amino acids is the highest, reaching 47.12%. Horizontal transfer occurs in the sweet potato organelle genome and nuclear genome. 40 mitochondrial genome segments share high homology with 14 chloroplast genome segments, 33 of which may be derived from chloroplast genome horizontal transfer. 171 mitochondrial genome sequences come from the horizontal transfer of nuclear genome. The phylogenetic analysis of organelle genes revealed that the leafy sweet potato was closely related to the tetraploid wild species Ipomoea tabascana and the wild diploid species Ipomoea trifida.


Assuntos
Genoma de Cloroplastos , Genoma Mitocondrial , Ipomoea batatas , Ipomoea , Ipomoea batatas/genética , Filogenia , Genoma Mitocondrial/genética , Ipomoea/genética , Genoma de Cloroplastos/genética , Cloroplastos/genética , Aminoácidos/genética , RNA de Transferência/genética
2.
Plant Dis ; 107(7): 2201-2204, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36510425

RESUMO

The Pectobacterium pathogens cause soft rot and blackleg diseases on many plants and crops, including potatoes. Here, we first report a high-quality genome assembly and announcement of the P. polaris strain QK413-1, which causes blackleg disease in potatoes in China. The QK413-1 genome was sequenced and assembled using the PacBio Sequel II and Illumina sequencing platform. The assembled genome has a total size of 5,005,507 bp with a GC content of 51.81%, encoding 4,782 open reading frames, including 639 virulence genes, 273 drug resistance genes, and 416 secreted proteins. The QK413-1 genome sequence provides a valuable resource for the control of potato blackleg and research into its mechanism.


Assuntos
Pectobacterium , Solanum tuberosum , Solanum tuberosum/microbiologia , Doenças das Plantas/microbiologia , Pectobacterium/genética , Plantas
3.
Heliyon ; 7(2): e06002, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33604464

RESUMO

The potato is an important food crop worldwide. While potatoes are rich in nutrition, the production suffers from yield loss caused by frost and freezing. This study used a common potato cultivar, 'Zhengshu 6', as the study system to measure the changes in the contents of soluble protein, malondialdehyde (MDA), proline, and chlorophyll after 1, 3, 5, and 7 days of low temperature treatment. We performed two-dimensional electrophoresis (2-DE) in combination with liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) technology and identified 52 differentially expressed protein spots among these timepoints. Results showed that levels of soluble protein, MDA, and proline increased as the duration of the low temperature treatment increased, and the chlorophyll content decreased. The 52 identified protein spots were classified by function as involved in defense response, energy metabolism, photosynthesis, protein degradation, ribosome formation, signal transduction, cell movement, nitrogen metabolism, and other physiological processes, thus allowing potato plants to achieve metabolic balance at low temperatures.

4.
Molecules ; 24(20)2019 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-31627373

RESUMO

Sweet potato anthocyanins are water-soluble pigments with many physiological functions. Previous research on anthocyanin accumulation in sweet potato has focused on the roots, but the accumulation progress in the leaves is still unclear. Two purple sweet potato cultivars (Fushu No. 23 and Fushu No. 317) with large quantities of anthocyanin in the leaves were investigated. Anthocyanin composition and content were assessed with ultra-performance liquid chromatography diode-array detection (UPLC-DAD) and ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS), and the expressions of genes were detected by qRT-PCR. The two cultivars contained nine cyanidin anthocyanins and nine peonidin anthocyanins with an acylation modification. The acylation modification of anthocyanins in sweet potato leaves primarily included caffeoyl, p-coumaryl, feruloyl, and p-hydroxy benzoyl. We identified three anthocyanin compounds in sweet potato leaves for the first time: cyanidin 3-p-coumarylsophoroside-5-glucoside, peonidin 3-p-coumarylsophoroside-5-glucoside, and cyanidin 3-caffeoyl-p-coumarylsophoroside-5-glucoside. The anthocyanidin biosynthesis downstream structural genes DFR4, F3H1, anthocyanin synthase (ANS), and UDP-glucose flavonoid 3-O-glucosyltransferase (UFGT3), as well as the transcription factor MYB1, were found to be vital regulatory genes during the accumulation of anthocyanins in sweet potato leaves. The composition of anthocyanins (nine cyanidin-based anthocyanins and nine peonidin-based anthocyanins) in all sweet potato leaves were the same, but the quantity of anthocyanins in leaves of sweet potato varied by cultivar and differed from anthocyanin levels in the roots of sweet potatoes. The anthocyanidin biosynthesis structural genes and transcription factor together regulated and controlled the anthocyandin biosynthesis in sweet potato leaves.


Assuntos
Antocianinas/biossíntese , Regulação da Expressão Gênica de Plantas , Ipomoea batatas/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Acilação , Antocianinas/classificação , Antocianinas/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Ipomoea batatas/genética , Folhas de Planta/genética , Proteínas de Plantas/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
5.
Front Plant Sci ; 8: 47, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28174589

RESUMO

Insect-proof net cultivation (IPN), rice-duck farming (RD), and organic matter return (OM) are important methods to realize sustainable development of rice production. A split-plot field experiment was performed to study the effects of IPN, RD, and OM on the rice yield, dry matter accumulation and N utilization. Results showed that compared to inorganic N fertilizer (IN), wheat straw return, and biogas residue return increased the rice yield by 2.11-4.28 and 4.78-7.67%, respectively, and also improved dry matter and N accumulation after the elongation stage (EG), dry matter and N translocation, and N recovery efficiency (NRE). These results attributed to an increase in leaf SPAD values and net photosynthetic rate (Pn) after the EG. Compared to conventional rice farming (CR), RD promoted the rice yield by 1.52-3.74%, and contributed to higher the leaf photosynthesis, dry matter and N accumulation, dry matter and N translocation, and NRE. IPN decreased the intensity of sun radiation in the nets due to the coverage of the insect-proof nets, which declined the leaf Pn, dry matter accumulation and translocation, N absorption and translocation, and NRE compared to open field cultivation (OFC). The rice yield of IPN were 2.48-4.98% lower than that of OFC. Compared to the interaction between CR and IN, the interaction between RD and OM improved the rice yield by 5.26-9.33%, and increased dry matter and N accumulation after the EG, dry matter and N translocation, and NRE. These results indicated that OM, RD and the interaction between RD and OM could promote dry matter accumulation and N utilization, which was beneficial to improve the rice yield.

6.
Environ Sci Pollut Res Int ; 24(7): 6581-6591, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28078520

RESUMO

Global rice production will be increasingly challenged by providing healthy food for a growing population at minimal environmental cost. In this study, a 2-year field experiment was conducted to investigate the effects of a novel rice cultivation mode (screenhouse cultivation, SHC) and organic material (OM) incorporation (wheat straw and wheat straw-based biogas residue) on methane (CH4) and nitrous oxide (N2O) emissions and rice yields. In addition, the environmental factors and soil properties were also determined. Relative to the traditional open-field cultivation (OFC), SHC decreased the CH4 and N2O emissions by 6.58-18.73 and 2.51-21.35%, respectively, and the global warming potential (GWP) was reduced by 6.49-18.65%. This trend was mainly because of lower soil temperature and higher soil redox potential in SHC. Although the rice grain yield for SHC were reduced by 2.51-4.98% compared to the OFC, the CH4 emissions and GWP per unit of grain yield (yield-scaled CH4 emissions and GWP) under SHC were declined. Compared to use of inorganic fertilizer only (IN), combining inorganic fertilizer with wheat straw (WS) or wheat straw-based biogas residue (BR) improved rice grain yield by 2.12-4.10 and 4.68-5.89%, respectively. However, OM incorporation enhanced CH4 emissions and GWP, leading to higher yield-scaled CH4 emissions and GWP in WS treatment. Due to rice yield that is relatively high, there was no obvious effect of BR treatment on them. These findings suggest that apparent environmental benefit can be realized by applying SHC and fermenting straw aerobically before its incorporation.


Assuntos
Agricultura/métodos , Fertilizantes , Aquecimento Global , Metano/análise , Óxido Nitroso/análise , Oryza/crescimento & desenvolvimento , Biocombustíveis/análise , Oryza/metabolismo , Solo/química
7.
Sci Total Environ ; 575: 58-66, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27728846

RESUMO

Integrated rice-duck farming (IRDF), as a mode of ecological agriculture, is an important way to realize sustainable development of agriculture. A 2-year split-plot field experiment was performed to evaluate the effects of IRDF on methane (CH4) and nitrous oxide (N2O) emissions and its ecological mechanism in rice season. This experiment was conducted with two rice farming systems (FS) of IRDF and conventional farming (CF) under four paddy-upland rotation systems (PUR): rice-fallow (RF), annual straw incorporating in rice-wheat rotation system (RWS), annual straw-based biogas residues incorporating in rice-wheat rotation system (RWB), and rice-green manure (RGM). During the rice growing seasons, IRDF decreased the CH4 emission by 8.80-16.68%, while increased the N2O emission by 4.23-15.20%, when compared to CF. Given that CH4 emission contributed to 85.83-96.22% of global warming potential (GWP), the strong reduction in CH4 emission led to a significantly lower GWP of IRDF as compared to CF. The reason for this trend was because IRDF has significant effect on dissolved oxygen (DO) and soil redox potential (Eh), which were two pivotal factors for CH4 and N2O emissions in this study. The IRDF not only mitigates the GWP, but also increases the rice yield by 0.76-2.43% compared to CF. Moreover, compared to RWS system, RF, RWB and RGM systems significantly reduced CH4 emission by 50.17%, 44.89% and 39.51%, respectively, while increased N2O emission by 10.58%, 14.60% and 23.90%, respectively. And RWS system had the highest GWP. These findings suggest that mitigating GWP and improving rice yield could be simultaneously achieved by the IRDF, and employing suitable PUR would benefit for relieving greenhouse effect.


Assuntos
Agricultura , Patos , Aquecimento Global , Oryza , Animais , China , Monitoramento Ambiental , Metano/análise , Óxido Nitroso/análise , Estações do Ano , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...