Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 652(Pt B): 1726-1733, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37672975

RESUMO

The presence of an excessive amount of lead iodide on the surface of perovskite solar cells (PSCs) is a significant contributing factor that adversely affects the stability of these devices when exposed to continuous light. To address this issue, we developed an effective strategy involving polishing PbI2 on a perovskite surface using CsF. In this study, we investigated the effects of CsF post-treatment on perovskite films and their photovoltaic properties. The results of the time-resolved photoluminescence and ultraviolet photoelectron spectroscopy tests reveal the significant positive impact of our passivation method based on CsF, which reduces the valence band offset between the perovskite and hole transport layers while simultaneously enhancing the carrier interface transport. PSCs treated with CsF exhibited a photoelectric conversion efficiency (PCE) of 24.25% and an increased fill factor (FF) of 81.72%, which surpassed those of the original PSCs (PCE = 22.12% and FF = 77.40%). Furthermore, after aging for over 2500 h at room temperature and in 30 ± 10% humidity, the PCE of the unpacked PSCs reduced to only 42% of the initial value. Furthermore, the devices treated with CsF maintained their impressive performance, with the PCE maintaining optimal levels at 91% of the initial efficiency.

2.
Materials (Basel) ; 12(19)2019 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-31547529

RESUMO

The hard turning process has been widely used in the field of hard material precision machining because of its high efficiency, low processing residual stress, and low environmental pollution. Due to its undesirably processing quality, it is still not a substitute for traditional grinding, so many studies have reported that the process has been optimized. However, there has been little research on the geometry optimization of hard cutting tools, which have a great influence on the traditional machining process. In this paper, two tools with different rake face shapes are designed. The finite element analysis method is used to compare their performance with a conventional plane tool while turning hardened steel. The results show that the cutting performance of the designed tool T1 and T2 (chip morphology, cutting force, and cutting temperature) and the quality of the machined surface are improved compared with the tool. The cutting force decreased by 12.72% and 14.74%, the cutting temperature decreased by 7.56% and 9.01%, respectively, and the surface residual stress decreased by 26.56% and 28.66%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...