Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2408045, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39177118

RESUMO

Inefficient active site utilization of oxygen evolution reaction (OER) catalysts have limited the energy efficiency of proton exchange membrane (PEM) water electrolysis. Here, an atomic grid structure is demonstrated composed of high-density Ir sites (≈10 atoms per nm2) on reactive MnO2-x support which mediates oxygen coverage-enhanced OER process. Experimental characterizations verify the low-valent Mn species with decreased oxygen coordination in MnO2-x exert a pivotal impact in the enriched oxygen coverage on the surface during OER process, and the distributed Ir atomic grids, where highly electrophilic Ir─O(II-δ)- bonds proceed rapidly, render intense nucleophilic attack of oxygen radicals. Thereby, this metal-support cooperation achieves ultra-low overpotentials of 166 mV at 10 mA cm-2 and 283 mV at 500 mA cm-2, together with a striking mass activity which is 380 times higher than commercial IrO2 at 1.53 V. Moreover, its high OER performance also markedly surpasses the commercial Ir black catalyst in PEM electrolyzers with long-term stability.

2.
Chem Commun (Camb) ; 59(79): 11803-11806, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37721035

RESUMO

In this study, ruthenium-doped CoFe-based layered double hydroxides on Ni foam (CoFe-ZLDH/Ru@NF) were fabricated via an etching-precipitation strategy. The resultant CoFe-ZLDH/Ru@NF exhibited excellent activity, showing low overpotentials of 219.8 mV and 60.9 mV to reach the current density of 10 mA cm-2 for the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), respectively. As a bifunctional electrocatalyst, it was assembled in an anion exchange membrane water electrolyser (AEMWE) unit, performing as an anode and cathode simultaneously, which only required a cell voltage of 2.33 V to accomplish the industrial level current density of 1 A cm-2 and operated steadily for over 12 h, making it promising for utilization in hydrogen production.

3.
Small ; 19(27): e2207965, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36965022

RESUMO

The progress of effective and durable electrocatalysts for oxygen evolution reaction (OER) is urgent, which is essential to promote the overall efficiency of green hydrogen production. To improve the performance of spinel cobalt-based oxides, which serve as promising water oxidation electrocatalysts in alkaline electrolytes, most researches have been concentrated on cations modification. Here, an anionic regulation mechanism is employed to adopt sulfur(S) anion substitution to supplant NiCo2 O4 by NiCo2 S4 , which contributed to an impressive OER performance in alkali. It is revealed that the substitution of S constructs a sub-stable spinel structure that facilitates its reconstruction into active amorphous oxysulfide under OER conditions. More importantly, as the active phase in the actual reaction process, the hetero-anionic amorphous oxysulfide has an appropriately tuned electronic structure and efficient OER electrocatalytic activity. This work demonstrates a promising approach for achieving anion conditioning-based tunable structure reconstruction for robust and easy preparation spinel oxide OER electrocatalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA