Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 601, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38877407

RESUMO

BACKGROUND: The herbaceous peony (Paeonia lactiflora Pall.) is extensively cultivated in China due to its root being used as a traditional Chinese medicine known as 'Radix Paeoniae Alba'. In recent years, it has been discovered that its seeds incorporate abundant unsaturated fatty acids, thereby presenting a potential new oilseed plant. Surprisingly, little is known about the full-length transcriptome sequencing of Paeonia lactiflora, limiting research into its gene function and molecular mechanisms. RESULTS: A total of 484,931 Reads of Inserts (ROI) sequences and 1,455,771 full-Length non-chimeric reads (FLNC) sequences were obtained for CDS prediction, TF analysis, SSR analysis and lncRNA identification. In addition, gene function annotation and gene structure analysis were performed. A total of 4905 transcripts were related to lipid metabolism biosynthesis pathway, belonging to 28 enzymes. We use these data to identify 10 oleosin (OLE) and 5 diacylglycerol acyltransferase (DGAT) gene members after de-redundancy. The analysis of physicochemical properties and secondary structure showed them similarity in gene family respectively. The phylogenetic analysis showed that the distribution of OLE and DGAT family members was roughly the same as that of Arabidopsis. Quantitative real-time polymerase chain reaction (qRT-PCR) analyses revealed expression changes in different seed development stages, and showed a trend of increasing and then decreasing. CONCLUSION: In summary, these results provide new insights into the molecular mechanism of triacylglycerol (TAG) biosynthesis and storage during the seedling stage in Paeonia lactiflora. It provides theoretical references for selecting and breeding oil varieties and understanding the functions of oil storage as well as lipid synthesis related genes in Paeonia lactiflora.


Assuntos
Paeonia , Sementes , Transcriptoma , Triglicerídeos , Paeonia/genética , Paeonia/metabolismo , Paeonia/crescimento & desenvolvimento , Sementes/genética , Sementes/metabolismo , Sementes/crescimento & desenvolvimento , Triglicerídeos/biossíntese , Filogenia , Regulação da Expressão Gênica de Plantas , Perfilação da Expressão Gênica , Genes de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Diacilglicerol O-Aciltransferase/genética , Diacilglicerol O-Aciltransferase/metabolismo , Metabolismo dos Lipídeos/genética
2.
J Colloid Interface Sci ; 668: 303-318, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38678886

RESUMO

Regulating interfacial active sites to improve peroxymonosulfate (PMS) activation efficiency is a hot topic in the heterogeneous catalysis field. In this study, we develop an inverted loading strategy to engineer asymmetric Mn-OV-Ce sites for PMS activation. Mn3O4@CeO2 prepared by loading CeO2 nanoparticles onto Mn3O4 nanorods exhibits the highest catalytic activity and stability, which is due to the formation of more oxygen vacancies (OV) at the Mn-OV-Ce sites, and the surface CeO2 layer effectively inhibits corrosion by preventing the loss of manganese ion active species into the solution. In situ characterizations and density functional theory (DFT) studies have revealed effective bimetallic redox cycles at asymmetric Mn-OV-Ce active sites, which promote surface charge transfer, enhance the adsorption reaction activity of active species toward pollutants, and favor PMS activation to generate (•OH, SO4•-, O2•- and 1O2) active species. This study provides a brand-new perspective for engineering the interfacial behavior of PMS activation.

3.
J Phys Chem Lett ; 15(4): 998-1005, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38252697

RESUMO

The prediction of standard enthalpies of formation (EOFs) for larger molecules involves a trade-off between accuracy and cost, often resulting in non-negligible errors. The connectivity-based hierarchy (CBH) and simple bond additivity correction (BAC) are two promising means for evaluating EOFs, although they cannot achieve strict chemical accuracy. Calculated errors in the CBH are confirmed from accumulated systematic errors associated with bond differences in chemical environments. On the basis of a new set of bond descriptors, our developed bond difference correction (BDC) method effectively solves incremental errors with molecular size and inability applications for aromatic molecules. To balance the accuracy between non-aromatic and aromatic molecules, a more accurate BAC-based method with unpaired electrons and p hybrid orbitals (BAC-EP) is developed. With the incorporation of the two methods above, strict chemical accuracy by the largest deviation is achieved at low costs. These universal, ultrafast, and high-throughput methods greatly contribute to self-consistent thermodynamic parameters in combustion mechanisms.

4.
Spectrochim Acta A Mol Biomol Spectrosc ; 310: 123964, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38286080

RESUMO

In this work, a stable ratiometric nanofluorescent probe for the detection of 2,6-dipicolinic acid (DPA), a Bacillus anthracis biomarker, was developed based on confinement-induced emission enhancement of cationic styrylpyridine salt derivative L in MCM-22 molecular sieve pores. The cationic L and the lanthanide Tb3+ were loaded into the pores of the molecular sieve by electrostatic interaction with the negatively charged AlO4 tetrahedron unit, and L exhibited enhanced red fluorescence emission as a stable fluorescence reference mark in the nanoprobe platform due to the restricted molecular torsion of L in the pores of MCM-22. At the same time, the characteristic green fluorescence emission of Tb3+ can be excited by energy transfer due to the "antenna effect" of DPA. The prepared Tb-L@MCM-22 nanoprobe showed specific selectivity and stable fluorescence ratiometric detection of DPA in tap water, lake water, bovine serum and actual bacterial spores. Benefiting from the confinement-induced fluorescence enhancement effect of L in the MCM-22 molecular sieve pores, the obtained Tb-L@MCM-22 can provide a stable reference signal for the fluorescence ratiometric detection of DPA with a limit of detection (LOD) of 78.6 nM and 1.310 × 104 spores per mL. More importantly, combining of the Tb-L@MCM-22 based DPA detection test strips with a smartphone app demonstrated a stable, convenient and rapid method for detecting of anthrax biomarkers.


Assuntos
Antraz , Bacillus anthracis , Humanos , Fluorescência , Piridinas , Ácidos Picolínicos , Antraz/diagnóstico , Cloreto de Sódio , Biomarcadores , Água , Corantes Fluorescentes
5.
World Neurosurg ; 183: e22-e27, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37865196

RESUMO

OBJECTIVE: Systemic inflammation following traumatic brain injury (TBI) has been extensively studied over the past decades, as it contributes significantly to the pathophysiological injury mechanisms and subsequent poor outcomes. Systemic immune-inflammation (SII) index is a novel biomarker of systemic inflammatory response. However, its predictive value regarding TBI prognosis in clinical practice remains insufficiently investigated. METHODS: A total of 102 TBI patients admitted to Nanjing Drum Tower Hospital from July 2019 to February 2022 were enrolled. We employed various statistical analyses to evaluate the correlation between inflammatory indicators upon admission and patient prognosis, compared the predictive accuracy of these indicators, and generated receiver operating curve analysis to test their prognostic performance. RESULTS: The SII index, platelet count, absolute lymphocyte count, and neutrophil/lymphocyte ratio (NLR) were capable of distinguishing TBI prognosis according to univariate logistic regression models (P < 0.05). Multivariate logistic regression models revealed that increased SII index, platelet count, and NLR upon admission were independent predictors of poor TBI prognosis (P < 0.05). Receiver operating curve analysis further demonstrated that the SII index (area under the curve = 0.845, 95% confidence interval 0.769-0.921, P = 0.000) exhibited higher predictive ability than the NLR (area under the curve = 0.694, 95% confidence interval 0.591-0.796, P = 0.001). CONCLUSIONS: Our findings suggested that increased SII index during the early stages of TBI was an independent risk factor for poor prognosis with satisfactory predictive value. The SII index provides a reliable, convenient, and cost-effective prognostic model to evaluate systemic inflammation after TBI and identify patients at risk of poor outcomes, thereby offering valuable guidance for clinical practice.


Assuntos
Lesões Encefálicas Traumáticas , Linfócitos , Humanos , Estudos Retrospectivos , Prognóstico , Inflamação , Lesões Encefálicas Traumáticas/diagnóstico
6.
EBioMedicine ; 99: 104912, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38096688

RESUMO

BACKGROUND: Abnormal liver function was frequently observed in nonalcoholic fatty liver disease (NAFLD) patients infected with SARS-CoV-2. Our aim was to explore the effect of SARS-CoV-2 inactivated vaccines on liver function abnormality among NAFLD patients with COVID-19. METHODS: The multi-center retrospective cohort included 517 NAFLD patients with COVID-19 from 1 April to 30 June 2022. Participants who received 2 doses of the vaccine (n = 274) were propensity score matched (PSM) with 243 unvaccinated controls. The primary outcome was liver function abnormality and the secondary outcome was viral shedding duration. Logistic and Cox regression models were used to calculate the odds ratio (OR) and hazard ratio (HR) for the outcomes. Sensitivity analysis was conducted to assess robustness. FINDINGS: PSM identified 171 pairs of vaccinated and unvaccinated patients. Liver function abnormality was less frequent in the vaccinated group (adjusted OR, 0.556 [95% CI (confidence interval), 0.356-0.869], p = 0.010). Additionally, the vaccinated group demonstrated a lower incidence of abnormal bilirubin levels (total bilirubin: adjusted OR, 0.223 [95% CI, 0.072-0.690], p = 0.009; direct bilirubin: adjusted OR, 0.175 [95% CI, 0.080-0.384], p < 0.001) and shorter viral shedding duration (adjusted HR, 0.798 [95% CI, 0.641-0.994], p = 0.044) than the unvaccinated group. Further subgroup analysis revealed similar results, while the sensitivity analyses indicated consistent findings. INTERPRETATION: SARS-CoV-2 vaccination in patients with NAFLD may reduce the risk of liver dysfunction during COVID-19. Furthermore, vaccination demonstrated beneficial effects on viral shedding in the NAFLD population. FUNDING: 23XD1422700, Tszb2023-01, Zdzk2020-10, Zdxk2020-01, 2308085J27 and JLY20180124.


Assuntos
COVID-19 , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/complicações , Vacinas contra COVID-19 , Estudos Retrospectivos , COVID-19/complicações , COVID-19/prevenção & controle , SARS-CoV-2 , Bilirrubina , Vacinas de Produtos Inativados , Vacinação
7.
Cell Commun Signal ; 21(1): 175, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37480108

RESUMO

BACKGROUND: The phagocytosis and homeostasis of microglia play an important role in promoting blood clearance and improving prognosis after subarachnoid hemorrhage (SAH). LC3-assocaited phagocytosis (LAP) contributes to the microglial phagocytosis and homeostasis via autophagy-related components. With RNA-seq sequencing, we found potential signal pathways and genes which were important for the LAP of microglia. METHODS: We used an in vitro model of oxyhemoglobin exposure as SAH model in the study. RNA-seq sequencing was performed to seek critical signal pathways and genes in regulating LAP. Bioparticles were used to access the phagocytic ability of microglia. Western blot (WB), immunoprecipitation, quantitative polymerase chain reaction (qPCR) and immunofluorescence were performed to detect the expression change of LAP-related components and investigate the potential mechanisms. RESULTS: In vitro SAH model, there were increased inflammation and decreased phagocytosis in microglia. At the same time, we found that the LAP of microglia was inhibited in all stages. RNA-seq sequencing revealed the importance of P38 MAPK signal pathway and DAPK1 in regulating microglial LAP. P38 was found to regulate the expression of DAPK1, and P38-DAPK1 axis was identified to regulate the LAP and homeostasis of microglia after SAH. Finally, we found that P38-DAPK1 axis regulated expression of BECN1, which indicated the potential mechanism of P38-DAPK1 axis regulating microglial LAP. CONCLUSION: P38-DAPK1 axis regulated the LAP of microglia via BECN1, affecting the phagocytosis and homeostasis of microglia in vitro SAH model. Video Abstract.


Assuntos
Microglia , Hemorragia Subaracnóidea , Humanos , Fagocitose , Autofagia , Inflamação , Proteínas Quinases Associadas com Morte Celular
8.
Physiol Mol Biol Plants ; 29(6): 773-782, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37520813

RESUMO

Herbaceous peony (Paeonia lactiflora Pall.) has emerged in the cut flower market due to its beautiful appearance. The bending flower stems caused by a lack of mechanical strength is the main problem restricting the development of the cut P. lactiflora industry. So it is of great worth to reveal the basis of stem development changes in P. lactiflora to improve its cut flower quality. Quantitative research on gene expression characteristics can provide clues for understanding their biological functions, and the screening of relatively stable expression genes is a prerequisite for the quantitative study of gene expression characteristics. Thus, it is necessary to find appropriate genes during stem development so as to analyze the qRT‒PCR results. In this study, 10 genes were screened, and these genes expressed stably in stems of different stem strengths at three different developmental stages. Then, their expressions were evaluated by RefFinder, BestKeeper, NormFinder, and GeNorm programs. The results demonstrated that γ-tubulin (γ-TUB) was the most suitable gene, followed by α-tubulin (α-TUB) and ß-D-glucosidase (ß-GUS), whereas histone H3 (His) was the least suitable gene. Besides, the temporal and spatial expression characteristics of PlCOMT1, the key gene concerned with the synthesis of cell wall fillers in P. lactiflora, were also used to evaluate the suitability of genes. Consequently, γ-TUB and α-TUB are the two best combinations during stem development, and their combination can be used for the stem development of P. lactiflora. These findings will provide a reference for the selection of genes related to stem development and the study of molecular mechanisms related to stem development in P. lactiflora. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-023-01325-5.

9.
Dis Markers ; 2023: 5781180, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36793477

RESUMO

Purpose: We have demonstrated that peroxiredoxin 2 (Prx2) released from lytic erythrocytes and damaged neurons into the subarachnoid space could activate microglia and then result in neuronal apoptosis. In this study, we tested the possibility of using Prx2 as an objective indicator for severity of the subarachnoid hemorrhage (SAH) and the clinical status of the patient. Materials and Methods: SAH patients were prospectively enrolled and followed up for 3 months. Cerebrospinal fluid (CSF) and blood samples were collected 0-3 and 5-7 days after SAH onset. The levels of Prx2 in the CSF and the blood were measured by an enzyme-linked immunosorbent assay (ELISA). We used Spearman's rank coefficient to assess the correlation between Prx2 and the clinical scores. Receiver operating characteristic (ROC) curves were used for Prx2 levels to predict the outcome of SAH by calculating the area under the curve (AUC). Unpaired Student's t-test was used to analyze the differences in continuous variables across cohorts. Results: Prx2 levels in the CSF increased after onset while those in the blood decreased. Existing data showed that Prx2 levels within 3 days in the CSF after SAH were positively correlated with the Hunt-Hess score (R = 0.761, P < 0.001). Patients with CVS had higher levels of Prx2 in their CSF within 5-7 days after onset. Prx2 levels in the CSF within 5-7 days can be used as a predictor of prognosis. The ratio of Prx2 in the CSF and the blood within 3 days of onset was positively correlated with the Hunt-Hess score and negatively correlated with Glasgow Outcome Scale (GOS; R = -0.605, P < 0.05). Conclusion: We found that the levels of Prx2 in the CSF and the ratio of Prx2 in the CSF and the blood within 3 days of onset can be used as a biomarker to detect the severity of the disease and the clinical status of the patient.


Assuntos
Hemorragia Subaracnóidea , Humanos , Hemorragia Subaracnóidea/líquido cefalorraquidiano , Peroxirredoxinas , Prognóstico , Biomarcadores/líquido cefalorraquidiano , Apoptose
10.
Cardiovasc Res ; 119(6): 1352-1360, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-36756815

RESUMO

AIMS: Publicized adverse events after vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) raised concern among patients with coronary atherosclerosis disease (CAD). We sought to study the association between SARS-CoV-2 vaccines and long-term clinical outcomes including ischaemic and bleeding events among patients with CAD. METHODS AND RESULTS: Inpatients diagnosed with CAD by coronary angiography, without a history of SARS-CoV-2 infection and vaccination, were included between 1 January and 30 April 2021, and underwent follow-up until 31 January 2022. Two doses of inactivated whole-virion SARS-CoV-2 vaccine (CoronaVac, BBIBPCorV, or WIBP-CorV) were available after discharge, and the group was stratified by vaccination. The primary composite outcomes were cardiovascular death, non-fatal myocardial infarction, stent thrombosis, unplanned revascularization, ischaemic stroke, venous thrombo-embolism, or peripheral arterial thrombosis. The bleeding outcomes were Bleeding Academic Research Consortium (BARC) type 3 or 5 bleeding. Cox regression models with vaccination status as a time-dependent covariate were used to calculate the hazard ratio (HR) for the outcomes. A propensity score matching method was used to reduce confounding biases. This prospective cohort study included 2078 individuals with CAD, 1021 (49.1%) were vaccinated. During a median follow-up of 9.1 months, 45 (4.3%) primary composite outcomes occurred in the unvaccinated group, and 33 (3.2%) in the vaccinated group. In Cox regression, the adjusted HR was 1.13 [95% confidence interval (CI) 0.65-1.93]. The adjusted HR for the bleeding outcomes associated with vaccination was 0.81 [95% CI 0.35-1.19]. After matching, the adjusted HR for the primary composite outcomes associated with vaccination was 1.06 [95% CI 0.57-1.99] and for the bleeding outcomes was 0.91 [95% CI 0.35-2.38]. Similar results were found in the seven prespecified subgroups. No grade 3 adverse reactions after vaccination were recorded. CONCLUSION: Our results indicated no evidence of an increased ischaemic or bleeding risk after vaccination with inactivated SARS-CoV-2 vaccine among Chinese patients with CAD, with limited statistical power.


Assuntos
Aterosclerose , Isquemia Encefálica , COVID-19 , Doença da Artéria Coronariana , Acidente Vascular Cerebral , Humanos , Vacinas contra COVID-19 , Estudos Prospectivos , SARS-CoV-2 , China
11.
J Fluoresc ; 33(4): 1565-1576, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36787040

RESUMO

A novel D-π-A type fluorescent probe L(NO3) for Cu (II) sensing was designed and fully characterized. The probe consists of a styryl-pyridine cation fluorescent group and a di-(2-picolyl)amine (DPA) receptor unit, which are linked by a phenyl group to form an electron donor-π-acceptor (D-π-A) conjugate system, especially the introduction of a nitrate counter anion for significantly enhanced water solubility of the probe. Fluorescence titration studies of the probe L(NO3) showed a higher selectivity for Cu2+ than other metal ions, and the emission spectrum was strongly quenched upon binding. The competitive binding assay and the low detection limit (0.932 µM) showed that the probe L(NO3) had strong anti-interference ability and excellent Cu2+ detection performance. The binding ratio of probe L(NO3) and Cu2+ was determined from Job's plot to be 1:1, which is consistent with the results obtained from X-ray crystal structures. Meanwhile, the probe showed instantaneous chemical reversibility when titrated with EDTA solution, indicating potential recycling properties of the probe. In addition, the design of inexpensive fluorescent test strips can perform the on-site and real-time detection Cu2+ with a color recognition application.

12.
Environ Sci Pollut Res Int ; 30(8): 21708-21722, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36279060

RESUMO

International cooperation has become a global consensus to solve environmental problems. This paper selects the top 30 countries in the global innovation index as the research sample, based on Patent Cooperation Treaties (PCT) data jointly applied in the field of new energy, constructs the international technical cooperation network, and uses the fixed effect panel regression model to verify the influence of international technical cooperation of new energy industry on carbon emission intensity. The results show that the USA, Germany, the UK, France, and the Netherlands are at the center of the network. International technological cooperation in new energy industry has a significant negative impact on carbon emission intensity. The convening of the United Nations Climate Change Conference in Copenhagen has accelerated global industrial upgrading, and the effect of international technical cooperation in new energy on carbon emission reduction has been strengthened. In addition, the level of economic development, international trade, and research and development (R&D) are also important factors affecting carbon emission intensity. Countries with high network centrality should give full play to their network influence to promote global cooperation in the field of new energy and achieve carbon mitigation targets by signing more environmental agreements.


Assuntos
Carbono , Comércio , Carbono/análise , Internacionalidade , Indústrias , Cooperação Internacional , Desenvolvimento Econômico , Dióxido de Carbono/análise , China
13.
Oxid Med Cell Longev ; 2022: 9148257, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36062190

RESUMO

Neuronal apoptosis after subarachnoid hemorrhage (SAH) is believed to play an important role in early brain injury after SAH. The energy metabolism of neuron is closely related to its survival. The transient hyperglycemia caused by insulin resistance (IR) after SAH seriously affects the prognosis of patients. However, the specific mechanisms of IR after SAH are still not clear. Studies have shown that α-KG takes part in the regulation of IR and cell apoptosis. In this study, we aim to investigate whether α-KG can reduce IR after SAH, improve the disorder of neuronal glucose metabolism, alleviate neuronal apoptosis, and ultimately play a neuroprotective role in SAH-induced EBI. We first measured α-KG levels in the cerebrospinal fluid (CSF) of patients with SAH. Then, we established a SAH model through hemoglobin (Hb) stimulation with HT22 cells for further mechanism research. Furthermore, an in vivo SAH model in mice was established by endovascular perforation. Our results showed that α-KG levels in CSF significantly increased in SAH patients and could be used as a potential prognostic biomarker. In in vitro model of SAH, we found that α-KG not only inhibited IR-induced reduction of glucose uptake in neurons after SAH but also alleviated SAH-induced neuronal apoptosis. Mechanistically, we found that α-KG inhibits neuronal IR by inhibiting S6K1 activation after SAH. Moreover, neuronal apoptosis significantly increased when glucose uptake was reduced. Furthermore, our results demonstrated that α-KG could also alleviate neuronal apoptosis in vivo SAH model. In conclusion, our study suggests that α-KG alleviates apoptosis by inhibiting IR induced by S6K1 activation after SAH.


Assuntos
Resistência à Insulina , Hemorragia Subaracnóidea , Animais , Apoptose/fisiologia , Glucose , Ácidos Cetoglutáricos , Camundongos , Fosforilação , Ratos , Ratos Sprague-Dawley , Hemorragia Subaracnóidea/tratamento farmacológico , Hemorragia Subaracnóidea/metabolismo
14.
Comput Intell Neurosci ; 2022: 7113765, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36035858

RESUMO

Insulators identification and their missing defect detection are of paramount importance for the intelligent inspection of high-voltage transmission lines. As the backgrounds are complex, some insulators may be occluded, and the missing defect of the insulator is so small that it is not easily detected from aerial images with different backgrounds. To address the above issues, in this study, a cascaded You Only Look Once (YOLO) models are mainly explored to perform insulators and their defect detection in aerial images. Firstly, the datasets used for insulators location and missing defect detection are created. Secondly, a new model is proposed to locate the position of insulators, which is improved in the feature extraction network and multisacle prediction network based on previous YOLOv3-dense model. An improved YOLOv4-tiny model is used to conduct missing defect detection on the detected insulators. And then, the proposed YOLO models are trained and tested on the built datasets, respectively. Finally, the final models are cascaded for insulators identification and their missing defect detection. The average precision of missing defect detection can reach 98.4%, which is 5.2% higher than that of faster RCNN and 10.2% higher than that of SSD. The running time of the cascaded YOLO models for missing defect detection can reach 106 frames per second. Extensive experiments demonstrate that the proposed deep learning models achieve good performance in insulator identification and its missing defect detection from the inspection of high-voltage transmission lines.


Assuntos
Redes Neurais de Computação
15.
Spectrochim Acta A Mol Biomol Spectrosc ; 281: 121622, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35868056

RESUMO

Lanthanide ion probes have recently been considered as promising sensing materials due to their high sensitivity and good optical properties. Herein, the 3D hierarchical lanthanide functionalized layered double hydroxides microcapsules were synthesized via a facile ion exchange strategy and further developed as novel fluorescent probes for detecting trace amounts of the anthrax biomarker dipicolinicacid (DPA). Benefiting from the 3D porous superstructure and abundant unsaturated coordination sites of lanthanide ion, the ternary Ni-Fe-Ln-LDHs (Ln = Tb/Eu) not only possess a large reactive contact area to improve the sensitivity of DPA detection, but also demonstrate very fast reaction rate. The design of inexpensive fluorescent test strips can perform the on-site and real-time detection via a smartphone with a color recognition application. More prominently, the sensitivity of the system was evaluated by actual spore samples with the detection limit as low as 3.54 × 104 spores/mL. The 3D lanthanide functionalized LDHs nanoprobe constructed by ion exchange exhibits a new vision for the development of a sensing platform in other research areas.


Assuntos
Antraz , Elementos da Série dos Lantanídeos , Antraz/diagnóstico , Biomarcadores , Cápsulas , Humanos , Hidróxidos , Troca Iônica , Elementos da Série dos Lantanídeos/química
16.
Sci Rep ; 12(1): 5358, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35354834

RESUMO

Sorghum has been widely used for liquor production and brewing, but how to make efficiently utilize sorghum straw (SS) has become an urgent problem. Meanwhile, the wastewater produced by winemaking is typical organic wastewater with a high ammonium concentration. To solve the problem of resource utilization of SS and remove ammonium from water, SS was used to prepare biochar as an adsorbent for ammonium adsorption. Batch adsorption experiments were carried out to study the influencing factors and adsorption mechanisms of ammonium onto sorghum straw biochar (SSB). The results showed that the adsorption capacity of SSB was much higher than that of SS. The SSB pyrolyzed at 300 °C had the highest adsorption capacity. The favorable pH was 6-10, and the optimal dosage was 2.5 g/L. The adsorption process and behavior conformed to the pseudo-second-order kinetic and Langmuir isotherm adsorption models. The maximum ammonium adsorption capacity of SSB at 45 °C was 7.09 mg/g, which was equivalent to 7.60 times of SS. The ammonium adsorption of SS and SSB was mainly chemical adsorption. The regeneration test indicated that SSB had good regeneration performance after three adsorption-regeneration cycles. This work suggests that SSB could be potentially applied to sewage treatment containing ammonium to achieve the purpose of resource recycling.


Assuntos
Compostos de Amônio , Sorghum , Poluentes Químicos da Água , Adsorção , Carvão Vegetal , Água
17.
Sci Total Environ ; 821: 153256, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35065117

RESUMO

Ball-milled biochar could potentially supply phosphorus, an essential element for plant growth. To realize resource reuse and phosphorus recovery, three feedstocks (rice straw, distillers grains, and Eupatorium adenophorum) were used to prepare ball-milled biochar to evaluate its release characteristics of phosphorus and potential effects on germination and growth. The results showed that the phosphate release performance of ball-milled distillers grains biochar (DM) at 300 and 600 °C was better than that of other biochars ball-milled for 12 h. The DM prepared at 600 °C and incubated for 12 (DM-12) or 24 h (DM-24) had the best phosphate release capacity. The solution with pH 3.0 was beneficial to the release of phosphate from DM-12. The pseudo-second-order model could better fit the phosphate release of DM-12. A germination and seedling growth experiment suggested that adding 2.5 wt% DM-12 was beneficial to the height of mung beans. This study shows that DM-12 can be used as a slow-release fertilizer for the growth of mung beans, which provides a new way for resource utilization of distillers grains and phosphorus-rich biochar.


Assuntos
Fosfatos , Poluentes Químicos da Água , Adsorção , Carvão Vegetal , Fósforo , Poluentes Químicos da Água/análise
18.
Small ; 17(44): e2103064, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34561943

RESUMO

Establishing the hierarchical porous architectures has been considered to be the most efficient approach to realize the efficient mass diffusion and large exposed active sites of designed micro/nanomaterial catalysts for hydrogen evolution reactions (HER). In this work, the nonequivalent cation exchange strategy is developed to fabricate the hierarchically porous Ag/Ag2 S heterostructure based on the rapid cation exchange by the metal-organic framework (MOF)-derived CoS. The as-prepared Ag/Ag2 S inherits the original 3D hollow morphology of CoS with porous nature, possessing abundant S-vacancies and lattice strain simultaneously due to the coordination loss and in-situ epitaxial growth of metallic Ag on the surface. Owing to the optimizations of lattice and electronic structures, the unique hierarchically porous Ag/Ag2 S heterostructure exhibits superior catalytic performance than previously reported catalysts derived from MOF. Theoretical calculations have confirmed that the co-existence of Ag cluster and sulfur vacancies activates the electroactivity of the interfacial defective region to boost the HER process. The binding strength of the proton and energetic trend of HER has been optimized with the formation of Ag/Ag2 S heterostructure, which guarantees the efficient generation of H2 . This study opens a new strategy for the utilization of the nonequivalent cation exchange strategy to efficiently synthesize advanced electrocatalysts with high performances.


Assuntos
Hidrogênio , Estruturas Metalorgânicas , Cátions , Porosidade , Prótons
19.
Am J Transl Res ; 13(5): 4055-4067, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34149998

RESUMO

Ischemia/reperfusion (I/R) induced injury is a major cause of coronary heart disease (CHD). Increased production of reactive oxygen species (ROS) can lead to an I/R injury in CHD, and the ROS level can be regulated by Glutathione peroxidase (GPX) enzyme family. In this study, we investigated the role and underlying molecular mechanism of GPX5 in I/R-induced AC16 cells. We found that the serum level of GPX5 was down-regulated in patients with CHD and I/R-induced AC16 cells. Overexpression of GPX5 inhibited I/R-induced apoptosis by suppressing the production of ROS. On the other hand, knock-down of GPX5 promoted apoptosis in AC16 cells by up-regulating the level of ROS. Furthermore, we found that GPX5 was regulated by synovial apoptosis inhibitor 1 (SYVN1)-mediated ubiquitination in AC16 cells. In I/R-induced AC16 cells, the expression of SYVN1 was up-regulated, and SYVN1 knock-down decreased the ROS levels and apoptotic rate but increased GPX5 levels. Moreover, GPX5 knockdown promoted ROS production and apoptosis, while its effects were attenuated by SYVN1 knockdown. Furthermore, SYVN1 was up-regulated while GPX5 was down-regulated in the myocardial tissue of I/R-injured rats. Taken together, our data demonstrate that GPX5 inhibits I/R-induced apoptosis of AC16 cells by down-regulating ROS level, and its stabilization is regulated by SYVN1-mediated ubiquitination.

20.
Small ; 16(51): e2003268, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33244854

RESUMO

Considerable efforts have been exerted to understand the formation and properties of the solid electrolyte interphase (SEI) in sodium ion batteries. However, the puzzling existence and role of SEI behind the huge volume changes of the graphite electrodes need to be answered. Herein, the reason of how ether-derived SEI maintains excellent reversibility despite the huge volume changes during cycling is unraveled. Theoretical simulations and Fourier-transform infrared spectroscopy demonstrate the formation mechanism of an SEI between the graphite anode and electrolyte. Furthermore, the high mechanical tolerance of the ether-derived SEI is confirmed in atomic force microscopy. A depth profile of X-ray photoelectron spectroscopy points to a multilayer structure of the ether-derived SEI. The outer layer comprises organics (sodium alkoxide), while the inorganics (Na2 CO3 , NaF) in interior region are mixed with some organics. Notably, the presence of organics ensures the adaptability of the SEI to the volume expansion of graphite during cycling, and the concentrated distribution of inorganics improves the Young's modulus (resistance to deformation). Therefore, the graphite anode exhibits high cycle stability (96.6% capacity retention ratio at 1 A g-1 over 860 cycles) and efficiency (≈99.5%).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...