Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 13: 1003498, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36338073

RESUMO

Fermented yellow wine lees (FYWL) are widely used to increase feed utilization and improve pig performance. Based on the preparation of co-FYWL using Bacillus subtilis and Enterococcus faecalis, the purpose of this study was to investigate the effects of co-FYWL on growth performance, gut microbiota, meat quality, and immune status of finishing pigs. 75 pigs were randomized to 3 treatments (5 replicates/treatment), basal diet (Control), a basal diet supplemented with 4%FYWL, and a basal diet supplemented with 8%FYWL, for 50 days each. Results showed that the 8% FYWL group significantly reduced the F/G and increased the average daily weight gain of pigs compared to the control group. In addition, 8% FYWL improved the richness of Lactobacillus and B. subtilis in the gut, which correlated with growth performance, serum immune parameters, and meat quality. Furthermore, acetate and butyrate in the feces were improved in the FYWL group. Simultaneously, FYWL improved the volatile flavor substances of meat, increased the content of flavor amino acids, and played a positive role in the palatability of meat. In addition, FYWL increased serum IgA, IgM, IL-4 and IL-10 levels. Overall, the growth performance, the gut microbiota associated with fiber degradation, meat quality, and immune status were improved in the 8% FYWL group.

2.
Ecotoxicol Environ Saf ; 216: 112177, 2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33839484

RESUMO

Dietary copper and zinc additives facilitate the growth and development of animals, but heavy metal in feces threatens the ecological environment, and balance is the key to solving the problem. In this study, a trial of 2000 pigs (early nursery, 9-15 kg; late nursery, 15-25 kg; grower: 25-60 kg) was conducted to analyze the effects of different diets (gradient dosage of copper and zinc additives) on growth performance, antioxidant performance, immune function, and fecal heavy metal excretion of piglets and growing pigs. Although no significant differences were observed in average daily gain (ADG) and average daily feed intake (ADFI) between treatments during the entire nursery-grower period, the addition of appropriate high doses of copper and zinc to the diet had a beneficial effect on the antioxidant status and immune function of weaned piglets. Especially at early nursery, compared with the low-copper group (5 mg/kg Cu), the high-copper group (120 mg/kg Cu) could significantly increase the peroxidase (POD), glutathione peroxidase (GSH-PX), total antioxidant capacity (T-AOC), catalase (CAT) and copper/zinc superoxide dismutase (Cu/Zn-SOD), cortisol in the serum. Moreover, the addition of zinc and copper in the diet not only increased the concentration of corresponding trace elements in the serum, but also affected the concentration of other trace elements in the serum. The reduction of copper and zinc content in the diet contributed to reducing the copper and zinc content in feces. In conclusion, we have formulated the mutual benefit dosages of copper and zinc (9-15 kg: 5 mg/kg Cu and 50 mg/kg Zn; 15-25 kg: 4 mg/kg Cu and 50 mg/kg Zn; 25-60 kg: 4 mg/kg Cu and 10 mg/kg Zn) for weaning piglets and growing pigs, which would help ensure the healthy growth of animals and reduce environmental heavy metal residues. CAPSULE: This study developed a mutually beneficial dose of copper and zinc in pig diets, which promotes animal growth and protects the environment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...