Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 10: 1421, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31749824

RESUMO

The subcellular localization of proteins is a fundamental aspect of protein functions. Determining the subcellular localization is important for understanding the biological functions of proteins. Here, we developed a set of rice organelle marker lines, in which the expressing fluorescent organelle markers could be used as comparative standards in determining the subcellular localization of the protein of interest. We constructed green fluorescent protein (GFP)- and/or Discosoma sp. red fluorescent protein (DsRed)-tagged organelle markers targeted to the endoplasmic reticulum (ER), mitochondria, Golgi apparatus, peroxisome, actin cytoskeleton, plastid, tonoplast, plasma membrane, and nucleus, respectively. The utility of the rice marker lines for protein subcellular localization studies was demonstrated by detecting a nucleus-localized OsWRKY45 and a mitochondria-associated NbHxk1 in protoplasts of the GFP-OsH2B and the ScCOX4-DsRed lines, respectively. Using a sheath-inoculation method, followed by a live-cell imaging, we detected co-localization of a Magnaporthe oryzae PWL2:mCherry : NLS fusion with the nucleus marker in the GFP-OsH2B rice epidermal cells, confirming the translocation of the M. oryzae effector PWL2 into host cells, and further demonstrating the feasibility of using the organelle marker lines for studying dynamics of proteins in rice cells in the interactions between rice and pathogens. The set of organelle marker lines developed in the present study, provides a valuable resource for protein subcellular localization studies in rice.

2.
Inorg Chem ; 58(14): 9108-9117, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31244085

RESUMO

Orange-yellow phosphors with extended broadband emission are highly desirable for warmer white-light-emitting diodes (WLED) with a higher color-rendering index. Targeted phosphors Ce3+-doped Lu3(MgxAl2-x)(Al3-xSix)O12 (x = 0, 0.25, 0.50, 0.75, and 1.00) were developed by chemical composition modification for luminescent tuning from green to orange-yellow with spectral broadening. The correlation between structure evolution and luminescent properties was elucidated by the local structure, fluorescence lifetime, and Eu3+ luminescence as a structural probe. The polyhedron distortion in the second-sphere coordination leads to the site differentiation and symmetry degradation of Ce3+ with the accommodation of (MgSi)6+ pairs, comprehensively resulting in the red shift (540 → 564 nm) and broadening in emission spectra. The WLED fabrication results demonstrate that the red shift and broadening in the emission of Lu3(MgxAl2-x)(Al3-xSix)O12:Ce3+ make it more suitable for the single-phosphor converted warm WLED.

3.
Inorg Chem ; 58(2): 1492-1500, 2019 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-30596246

RESUMO

High-quality white light-emitting diodes (w-LEDs) are mainly determined by conversion phosphors and the enhancement of cyan component that dominates the high color rendering index. New phosphors (Lu2M)(Al4Si)O12:Ce3+ (M = Mg, Ca, Sr and Ba), showing a cyan-green emission, have been achieved via the co-substitution of Lu3+-Al3+ by M2+-Si4+ pair in Lu3Al5O12:Ce3+ to compensate for the lack of cyan region and avoid using multiple phosphors. The excitation bands of (Lu2M)(Al4Si)O12:Ce3+ (M = Mg, Ca, Sr and Ba) show a red-shift from 434 to 445 nm which is attributed to the larger centroid shift and crystal field splitting. The enhanced structural rigidity associated with the accommodation of larger M2+ leads to a decreasing Stokes shift and the corresponding blue-shift (533 → 511 nm) in emission spectra, along with an improvement in thermal stability (keeping ∼93% at 150 °C). The cyan-green phosphor Lu2BaAl4SiO12:Ce3+ enables to fabricate a superhigh color rendering w-LED ( Ra = 96.6), verifying its superiority and application prospect in high-quality solid-state lightings.

4.
RSC Adv ; 8(61): 35271-35279, 2018 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-35547064

RESUMO

A series of Ce3+-, Tb3+- and Ce3+/Tb3+-doped La3Si8N11O4 phosphors were synthesized by gas-pressure sintering (GPS). The energy transfer between Ce3+ and Tb3+ occurred in the co-doped samples, leading to a tunable emission color from blue to green under the 360 nm excitation. The energy transfer mechanism was controlled by the dipole-dipole interaction. The Ce3+/Tb3+ co-doped sample had an external quantum efficiency of 46.7%, about 5.6 times higher than the Tb-doped La3Si8N11O4 phosphor (8.3%). The thermal quenching of the Tb3+ emission in La3Si8N11O4:Tb,Ce was greatly reduced from 74 to 30% at 250 °C, owing to the energy transfer from Ce3+ to Tb3+. The blue-green La3Si8N11O4:0.01Ce,0.05Tb phosphor was testified to fabricate a warm white LED that showed a high color rendering index of 90.2 and a correlated color temperature of 3570 K. The results suggested that the co-doped La3Si8N11O4:Ce,Tb phosphor could be a potential blue-green down-conversion luminescent material for use in UV-LED pumped wLEDs.

5.
Inorg Chem ; 56(22): 14170-14177, 2017 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-29112394

RESUMO

Eu2+-doped La3Si8N11O4 phosphors were synthesized by the high temperature solid-state method, and their photoluminescence properties were investigated in this work. La3Si8N11O4:Eu2+ exhibits a strong broad absorption band centered at 320 nm, spanning the spectral range of 300-600 nm due to 4f7 → 4f65d1 electronic transitions of Eu2+. The emission spectra show a broad and asymmetric band peaking at 481-513 nm depending on the Eu2+ concentration, and the emission color can be tuned in a broad range owing to the energy transfer between Eu2+ ions occupying two independent crystallographic sites. Compared to the Ce3+-doped La3Si8N11O4, the Eu2+-doped one shows a larger thermal quenching, predominantly owing to photoionization. Under 320 nm excitation, the internal and external quantum efficiencies are 44 and 33%, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...