Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Chem ; 11: 1174207, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37090242

RESUMO

Effective detection of toxic and hazardous gases is crucial for ensuring human safety, and high-performance metal oxide-based gas sensors play an important role in achieving this goal. In2O3 is a widely used n-type metal oxide in gas sensors, and various In2O3 nanostructures have been synthesized for detecting small gas molecules. In this review, we provide a brief summary of current research on In2O3-based gas sensors. We discuss methods for synthesizing In2O3 nanostructures with various morphologies, and mainly review the sensing behaviors of these structures in order to better understand their potential in gas sensors. Additionally, the sensing mechanism of In2O3 nanostructures is discussed. Our review further indicates that In2O3-based nanomaterials hold great promise for assembling high-performance gas sensors.

2.
Nanomaterials (Basel) ; 11(4)2021 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-33920589

RESUMO

The construction of heterojunctions has been widely applied to improve the gas sensing performance of composites composed of nanostructured metal oxides. This review summarises the recent progress on assembly methods and gas sensing behaviours of sensors based on nanostructured metal oxide heterojunctions. Various methods, including the hydrothermal method, electrospinning and chemical vapour deposition, have been successfully employed to establish metal oxide heterojunctions in the sensing materials. The sensors composed with the built nanostructured heterojunctions were found to show enhanced gas sensing performance with higher sensor responses and shorter response times to the targeted reducing or oxidising gases compare with those of the pure metal oxides. Moreover, the enhanced gas sensing mechanisms of the metal oxide-based heterojunctions to the reducing or oxidising gases are also discussed, with the main emphasis on the important role of the potential barrier on the accumulation layer.

3.
RSC Adv ; 9(44): 25690-25696, 2019 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-35530093

RESUMO

The hydrogen storage performances of novel graphene nanoflakes doped with Cr atoms were systematically investigated using first-principles density functional theory. The calculated results showed that one Cr atom could be successfully doped into the graphene nanoflake with a binding energy of -4.402 eV. Different from the H2 molecule moving away from the pristine graphene nanoflake surface, the built Cr-doped graphene nanoflake exhibited a high affinity to the H2 molecule with a chemical adsorption energy of -0.574 eV. Moreover, the adsorptions of two to five H2 molecules on the Cr-doped graphene nanoflake were studied as well. It was found that there were a maximum of three H2 molecules stored on the graphene nanoflake doped with one Cr atom. Also, the further calculations showed that the numbers of the stored H2 molecules were effectively improved to be six (or nine) when the graphene nanoflakes were doped with two (or three) Cr atoms. This research reveals that the graphene nanoflake doped with Cr atom could be a promising material to store H2 molecules and its H2 storage performance could be effectively enhanced through modifying the number of doped Cr atoms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...