Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 14: 1187522, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153218

RESUMO

Ephestia elutella is a major pest responsible for significant damage to stored tobacco over many years. Here, we conduct a comparative genomic analysis on this pest, aiming to explore the genetic bases of environmental adaptation of this species. We find gene families associated with nutrient metabolism, detoxification, antioxidant defense and gustatory receptors are expanded in the E. elutella genome. Detailed phylogenetic analysis of P450 genes further reveals obvious duplications in the CYP3 clan in E. elutella compared to the closely related species, the Indianmeal moth Plodia interpunctella. We also identify 229 rapidly evolving genes and 207 positively selected genes in E. elutella, respectively, and highlight two positively selected heat shock protein 40 (Hsp40) genes. In addition, we find a number of species-specific genes related to diverse biological processes, such as mitochondria biology and development. These findings advance our understanding of the mechanisms underlying processes of environmental adaptation on E. elutella and will enable the development of novel pest management strategies.

2.
PLoS Genet ; 15(6): e1008235, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31242182

RESUMO

Polyphenism is a successful strategy adopted by organisms to adapt to environmental changes. Brown planthoppers (BPH, Nilaparvata lugens) develop two wing phenotypes, including long-winged (LW) and short-winged (SW) morphs. Though insulin receptor (InR) and juvenile hormone (JH) have been known to regulate wing polyphenism in BPH, the interaction between these regulators remains largely elusive. Here, we discovered that a conserved microRNA, miR-34, modulates a positive autoregulatory feedback loop of JH and insulin/IGF signaling (IIS) pathway to control wing polyphenism in BPH. Nlu-miR-34 is abundant in SW BPHs and suppresses NlInR1 by targeting at two binding sites in the 3'UTR of NlInR1. Overexpressing miR-34 in LW BPHs by injecting agomir-34 induces the development towards SW BPHs, whereas knocking down miR-34 in SW BPHs by injecting antagomir-34 induces more LW BPHs when another NlInR1 suppressor, NlInR2, is also suppressed simultaneously. A cis-response element of Broad Complex (Br-C) is found in the promoter region of Nlu-miR-34, suggesting that 20-hydroxyecdysone (20E) might be involved in wing polyphenism regulation. Topic application of 20E downregulates miR-34 expression but does not change wing morphs. On the other hand, JH application upregulates miR-34 expression and induces more SW BPHs. Moreover, knocking down genes in IIS pathway changes JH titers and miR-34 abundance. In all, we showed that miRNA mediates the cross talk between JH, 20E and IIS pathway by forming a positive feedback loop, uncovering a comprehensive regulation mechanism which integrates almost all known regulators controlling wing polyphenism in insects.


Assuntos
Hemípteros/genética , MicroRNAs/genética , Receptor de Insulina/genética , Asas de Animais/crescimento & desenvolvimento , Animais , Antagomirs/genética , Ecdisterona/genética , Regulação da Expressão Gênica/genética , Hemípteros/crescimento & desenvolvimento , Hormônios Juvenis/genética , Fenótipo , Regiões Promotoras Genéticas/genética , Asas de Animais/metabolismo
3.
Database (Oxford) ; 2018: 1-9, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30219838

RESUMO

Insect pests reduce yield and cause economic losses, which are major problems in agriculture. Parasitic wasps are the natural enemies of many agricultural pests and thus have been widely used as biological control agents. Plants, phytophagous insects and parasitic wasps form a tritrophic food chain. Understanding the interactions in this tritrophic system should be helpful for developing parasitic wasps for pest control and deciphering the mechanisms of parasitism. However, the genomic resources for this tritrophic system are not well organized. Here, we describe the WaspBase, a new database that contains 573 transcriptomes of 35 parasitic wasps and the genomes of 12 parasitic wasps, 5 insect hosts and 8 plants. In addition, we identified long non-coding RNA, untranslated regions and 25 widely studied gene families from the genome and transcriptome data of these species. WaspBase provides conventional web services such as Basic Local Alignment Search Tool, search and download, together with several widely used tools such as profile hidden Markov model, Multiple Alignment using Fast Fourier Transform, automated alignment trimming and JBrowse. We also present a collection of active researchers in the field of parasitic wasps, which should be useful for constructing scientific networks in this field.


Assuntos
Genômica , Interações Hospedeiro-Parasita/genética , Parasitos/genética , Plantas/genética , Software , Vespas/genética , Animais , Bases de Dados Genéticas , Genoma , Família Multigênica , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...