Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 324: 116246, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36162320

RESUMO

Hazardous waste incineration fly ash (HFA) is considered a hazardous waste owing to the high associated concentrations of heavy metals and soluble salts. Hence, cost effective methods are urgently needed to properly dispose HFA. In this study, geopolymers were prepared by alkali-activation technology to stabilize and solidify heavy metals in HFA. In addition, the effects of three different aluminosilicates (metakaolin, fly ash, and glass powder) on the heavy metal immobilization efficiency were investigated. Because the soluble salt content of HFA is too high for their direct placement in flexible landfill sites and water washing can lead to heavy metal leaching, water-washing experiments were conducted after alkali-activation treatment to remove soluble salts. The results suggest that the concentrations of heavy metals leached from geopolymers can satisfy the Chinese Standard limits (GB18598-2019) when the addition of aluminosilicates exceeds 20 wt%. More than 77% of Cl- and >64% of SO42- in geopolymers could be removed via water-washing treatment. The Zn leaching concentration was maintained below approximately 0.52 ppm. After alkali-activation treatment, the water-washing process could efficiently remove soluble salts while inhibiting heavy metal leaching. Sodium-aluminosilicate-hydrate (N-A-S-H) gel, a product of the geopolymerization process in this study, was demonstrated to act as a protective shell that inhibited heavy metal leaching. Hence, HFA-based geopolymers are considered suitable for disposal in flexible landfills.


Assuntos
Metais Pesados , Eliminação de Resíduos , Incineração/métodos , Cinza de Carvão , Resíduos Perigosos , Sais , Metais Pesados/análise , Álcalis , Água , Eliminação de Resíduos/métodos , Resíduos Sólidos/análise , Carbono , Material Particulado
2.
J Hazard Mater ; 388: 121751, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-31796353

RESUMO

Secondary pollution emitted from hazardous waste incinerators (HWIs) can pose potential risks to the surrounding populations and environment. An investigation was conducted on pollutant emission status in a HWI combusting homogenized phenolic waste, woodchips, and electroplating sludge during the sampling period. Morphologies and elemental compositions of particles in flue gas and indoor air of the incinerator were characterized by TEM-EDS. Eight types of single particles were classified, as organic, soot, K-rich, S-rich, Na-rich, Fe-rich, mineral and fly ash particles. In the indoor air near the fly ash collector, organic and S-rich particles were the two most observed particles, taking 56 % and 30 %, respectively. While near the bottom ash collector, Fe-rich particles took approximately 30 %. Besides, the partitioning behavior of heavy metals in the incinerating process were investigated. Hg, Cd and Pb were mainly enriched in fly ash through evaporation, condensation, and adsorption; while Cr, Cu, Mn, and Ni were mostly remained in the bottom ash due to their low volatilities. This study provides information for regional air pollution source apportionment, but also helps understand the partitioning behavior of heavy metals for the secondary pollution control. Meanwhile, the visualized micro-compositions of indoor particles pave a way for occupational exposure risk assessment.

3.
J Comb Chem ; 8(1): 18-25, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16398549

RESUMO

Spectroscopic barcoding was recently introduced as a new pre-encoding strategy wherein the resin beads are not just carriers for solid phase synthesis, but are, in addition, the repository of the synthetic scheme to which they were subjected. To expand the repertoire of spectroscopically barcoded resins (BCRs), here we introduce a new family of halogenated polystyrene-based polymers designed for high-throughput combinatorial analysis using not only infrared and Raman spectroscopy but also imaging time-of-flight secondary ion mass spectrometry (ToF-SIMS). In particular, we have established that (a) the halogen content of these new resins can be used as an encoding element in quantitative imaging ToF-SIMS and (b) the number of styrene monomers used to generate unique vibrational fingerprints can be significantly reduced by using monomers in different molar ratios. The combination of quantitative imaging ToF-SIMS and vibrational spectroscopy is anticipated to dramatically increase the repertoire of possible BCRs from a few hundreds to several thousands.


Assuntos
Técnicas de Química Combinatória/métodos , Poliestirenos/química , Resinas Sintéticas/química , Espectrometria de Massa de Íon Secundário , Técnicas de Química Combinatória/instrumentação , Processamento Eletrônico de Dados/instrumentação , Processamento Eletrônico de Dados/métodos , Análise Espectral Raman
4.
Anal Chem ; 77(19): 6190-6, 2005 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-16194078

RESUMO

Investigation of the spatial distribution of lipids in cell membranes can lead to an improved understanding of the role of lipids in biological function and disease. Time-of-flight secondary ion mass spectrometry is capable of molecule-specific imaging of biological molecules across single cells and has demonstrated potential for examining the functional segregation of lipids in cell membranes. In this paper, standard SIMS spectra are analyzed for phosphatidylethanolamine, phosphatidylglycerol, phosphatidylserine, phosphatidylinositol, cholesterol, and sulfatide. Importantly, each of the lipids result in signature mass spectral peaks that allow them to be identified. These signature peaks are also useful for imaging experiments and are utilized here to simultaneously image lipids on a micrometer scale in picoliter vials. Because the low secondary ion signal achieved for lipids from an atomic primary ion source makes cell-imaging experiments challenging, improving signal with cluster primary ion sources is of interest. Here, we compare the secondary ion yield for seven lipids using atomic (Ga+ or In+) ion sources and a buckminsterfullerene (C60+) primary ion source. A 40-1000-fold improvement in signal is found with C60+ relative to the other two ion sources, indicating great promise for future cellular imaging applications using the C60+ probe.


Assuntos
Fulerenos/química , Íons/química , Lipídeos/química , Espectrometria de Massa de Íon Secundário/métodos , Estrutura Molecular
5.
J Am Chem Soc ; 126(12): 3902-9, 2004 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-15038744

RESUMO

We employ a newly developed buckminsterfullerene (C(60)) primary ion beam with time-of-flight secondary ion mass spectrometry to create molecule-specific images of resin particles employed in the solid-phase synthesis of peptide combinatorial libraries. This new cluster ion source, when operated at an incident energy of 20 keV, is remarkably effective at desorbing small peptides directly from a polymer surface and opens new possibilities for characterizing large arrays of diverse sets of molecules. In addition, the C(60) ion beam may be focused to a spot of 1.5 microm in diameter, enabling molecule-specific images of single 100 microm resin particles to be acquired. We report three significant aspects associated with utilizing the C(60) projectile that show how this technology can be taken to a more advanced level, especially when compared to results obtained with more conventional atomic primary ions. First, the useful yield of molecular ions is generally observed to be enhanced by at least 3 orders of magnitude over those previously possible. Second, the energy dissipation process associated with the C(60) impact is most efficient at desorbing molecules on soft substrates such as polymer surfaces rather than harder substrates such as metals or semiconductors. Third, there is a greatly reduced tendency for insulating surfaces to build up excess charge, obviating the need for charge compensation. Using a small five-member peptide library as a model, we show that by utilizing the focusing properties of the C(60) beam, it is possible to assay the surface composition of 100-microm polymer beads at a rate of up to 10 particles/s. Moreover, even at the picomole level, there are enough sequence ions in the mass spectrum to determine a unique composition. The results illustrate the ability to quickly assay large libraries without the use of tags and suggest the strategy may be applicable to a range of high-throughput experiments.


Assuntos
Técnicas de Química Combinatória , Biblioteca de Peptídeos , Peptídeos/síntese química , Resinas Sintéticas/química , Processamento de Imagem Assistida por Computador , Espectrometria de Massas de Bombardeamento Rápido de Átomos , Espectrometria de Massa de Íon Secundário
6.
Anal Chem ; 75(22): 6155-62, 2003 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-14615995

RESUMO

We employ imaging time-of-flight secondary ion mass spectrometry to perform high-throughput analysis of solid-phase synthesized combinatorial libraries by acquiring mass spectra from arrays of polymer resin particles. To generalize this procedure to various types of resins and their associated chemical linkers, it is necessary to understand the dynamics associated with the analyte molecules during chemical pretreatment steps. Using stearic acid as a model compound, we examine the influence of three classes of linkers-acid or base labile linkers, a thermally labile linker, and a photochemically cleavable linker- all of which are used to anchor one end of the analyte to the polymer resin. With data obtained using secondary ion mass spectrometry, scanning electron microscopy, and X-ray photoelectron spectroscopy, we conclude that an effective treatment of the resin needs to include cleaving the linker and extracting the unbound analyte to the resin surface. We also demonstrate that the hydrophilicity of the polymeric constituents of a resin particle affects the experiments by changing the location of the analyte molecules during resin treatment. With this information, it is possible to utilize imaging TOF-SIMS to assay a range of material supports with assurance that high-quality spectra can be acquired.


Assuntos
Técnicas de Química Combinatória , Espectrometria de Massa de Íon Secundário/instrumentação , Espectrometria de Massa de Íon Secundário/métodos , Processamento de Imagem Assistida por Computador , Microscopia Eletrônica de Varredura , Polímeros , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...