Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 12: 691292, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34381479

RESUMO

Plant nutrition status is closely associated with plant defense against insect herbivores. However, the way nitrogen supply regulates rice anti-herbivore is not clear. This study investigated the effects of low (LN, 0.3 mM) and high (HN, 3 mM) nitrate levels on rice resistance against the striped stem borer Chilo suppressalis (SSB), one of the major destructive rice pests. Seven-day-old rice seedlings were cultured with different nitrate levels for 30 days and then inoculated with third instars of SSB. LN significantly enhanced rice anti-herbivore defense and lowered the total nitrogen content in the plants, but increased the content of free amino acids after SSB infestation. Additionally, LN significantly increased the accumulation of phenolic acids and flavonoids, especially lignin, resulting in enhanced constitutive defense in SSB-infested plants. SSB feeding led to a rapid accumulation of secondary metabolites. HN application led to the accumulation of metabolites derived from cinnamic acid, p-coumaric acid, p-coumaric CoA, feruloyl CoA, and apigenin, while LN led to the accumulation of metabolites derived from 3-dehydroquinic acid, phenylalanine, acetyl CoA, and aspartic acid. Collectively, our finding suggests that nitrogen deficiency enhances rice anti-herbivore defense via constitutive defense by the accumulation of phenolic acids and flavonoids.

2.
Front Plant Sci ; 10: 498, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31057594

RESUMO

Low spring temperatures often occur during the winter wheat booting stage, when the young ears are very sensitive to cold. In this study, we used two wheat varieties differing in cold sensitivity (sensitive variety Yangmai 18 and tolerant variety Yannong 19) to examine the effect of low temperature on wheat grain number at booting stage. Low temperature stress was simulated in an artificial climate chamber at 4°C for 60 h in 2016 and at 2, 0, or -2°C for 24 h in morphological assays, showing that the development of wheat spikelets was inhibited and floret growth was delayed following low temperature stress. However, an increase in the sucrose content of young panicles was also observed, and the activity of enzymes involved in sucrose metabolism was dynamically altered. Sucrose phosphate synthase activity was enhanced, and sucrose synthase activity significantly increased after treatment at 4 and 2°C, respectively. However, activities of sucrose synthase and invertase decreased with a reduction in temperature. Gene expression assays further revealed downregulation of TaSuS1 expression and upregulation of TaSuS2, while expression of CWINV was inhibited. Moreover, phytohormone content assays showed an increase in the content of abscisic acid in young wheat ears, but a decrease in the content of auxin and gibberellins. The grain number per spike and 1000-grain weight also showed a downward trend following low temperature stress. Overall, these findings suggest that low temperature at booting induces abscisic acid accumulation in winter wheat, altering the activity of the enzymes involved in sucrose metabolism, which leads to an accumulation of sucrose in the young ears, thereby having a negative effect on wheat production.

3.
Front Plant Sci ; 10: 1740, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32117334

RESUMO

Phosphoinositide 3-kinase (PI3K) plays a vital role in plant response to abiotic stress. However, the role of PI3K in plant immunity is largely unknown. This study showed that PI3K enhanced Arabidopsis resistance to Pseudomonas syringae pv tomato DC3000 (Pst DC3000) and Pst DC3000 (avrRpt2). Overexpression of AtVPS34 promoted stomatal closure while PI3K inhibitors blocked that after spray inoculation. Additionally, gene expression of AtVPS34 was increased upon infection by Pst DC3000 (avrRpt2), and SA upregulated AtVPS34 gene expression in this process. Furthermore, overexpression of AtVPS34 enhanced PR gene expression after syringe infiltration with Pst DC3000 (avrRpt2), while PI3K inhibitors inhibited that. The production of hydrogen peroxide and the expression of gene encoding antioxidant enzyme were both enhanced in AtVPS34 overexpressing lines after spray inoculation or syringe infiltration with Pst DC3000 (avrRpt2). Collectively, these results unraveled a novel and broad role of PI3K in plant immunity which promoted stomatal closure and PR gene expression possibly via regulating ROS production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...