Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(9): 6887-6895, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38386278

RESUMO

Atomic defects in two-dimensional (2D) materials impact electronic and optoelectronic properties, such as doping and single photon emission. An understanding of defect-property relationships is essential for optimizing material performance. However, progress in understanding these critical relationships is hindered by a lack of straightforward approaches for accurate, precise, and reliable defect quantification on the nanoscale, especially for insulating materials. Here, we demonstrate that lateral force microscopy (LFM), a mechanical technique, can observe atomic defects in semiconducting and insulating 2D materials under ambient conditions. We first improve the sensitivity of LFM through consideration of cantilever mechanics. With the improved sensitivity, we use LFM to locate atomic-scale point defects on the surface of bulk MoSe2. By directly comparing LFM and conductive atomic force microscopy (CAFM) measurements on bulk MoSe2, we demonstrate that point defects observed with LFM are atomic defects in the crystal. As a mechanical technique, LFM does not require a conductive pathway, which allows defect characterization on insulating materials, such as hexagonal boron nitride (hBN). We demonstrate the ability to observe intrinsic defects in hBN and defects introduced by annealing. Our demonstration of LFM as a mechanical defect characterization technique applicable to both conductive and insulating 2D materials will enable routine defect-property determination and accelerate materials research.

2.
ACS Nano ; 17(24): 24743-24752, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38095969

RESUMO

Defects significantly affect the electronic, chemical, mechanical, and optical properties of two-dimensional (2D) materials. Thus, it is critical to develop a method for convenient and reliable defect quantification. Scanning transmission electron microscopy (STEM) and scanning tunneling microscopy (STM) possess the required atomic resolution but have practical disadvantages. Here, we benchmark conductive atomic force microscopy (CAFM) by a direct comparison with STM in the characterization of transition metal dichalcogenides (TMDs). The results conclusively demonstrate that CAFM and STM image identical defects, giving results that are equivalent both qualitatively (defect appearance) and quantitatively (defect density). Further, we confirm that CAFM can achieve single-atom resolution, similar to that of STM, on both bulk and monolayer samples. The validation of CAFM as a facile and accurate tool for defect quantification provides a routine and reliable measurement that can complement other standard characterization techniques.

3.
Small ; 18(52): e2205780, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36344422

RESUMO

The advancement of nanoenabled wafer-based devices requires the establishment of core competencies related to the deterministic positioning of nanometric building blocks over large areas. Within this realm, plasmonic single-crystal gold nanotriangles represent one of the most attractive nanoscale components but where the formation of addressable arrays at scale has heretofore proven impracticable. Herein, a benchtop process is presented for the formation of large-area periodic arrays of gold nanotriangles. The devised growth pathway sees the formation of an array of defect-laden seeds using lithographic and vapor-phase assembly processes followed by their placement in a growth solution promoting planar growth and threefold symmetric side-faceting. The nanotriangles formed in this high-yield synthesis distinguish themselves in that they are epitaxially aligned with the underlying substrate, grown to thicknesses that are not readily obtainable in colloidal syntheses, and present atomically flat pristine surfaces exhibiting gold atoms with a close-packed structure. As such, they express crisp and unambiguous plasmonic modes and form photoactive surfaces with highly tunable and readily modeled plasmon resonances. The devised methods, hence, advance the integration of single-crystal gold nanotriangles into device platforms and provide an overall fabrication strategy that is adaptable to other nanomaterials.


Assuntos
Ouro , Nanoestruturas , Ouro/química , Nanoestruturas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...