Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 63(9): 4233-4248, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38377313

RESUMO

Indium-based metal-organic frameworks (In-MOFs) have now become an attractive class of porous solids in materials science and electrochemistry due to their diverse structures and promising applications. In the field of proton conduction, to find more crystalline MOFs with splendid proton-conductive properties, herein, five three-dimensional isostructural In-MOFs, MIL-68-In or MIL-68-In-X (X = NH2, OH, Br, or NO2) using terephthalic acid (H2BDC) or functionalized terephthalic acids (H2BDC-X) as multifunctional linkages were efficiently fabricated. First, the outstanding structural stability of the five MOFs, including thermal and water stability, was verified by thermal analysis and powder X-ray diffraction. Subsequently, the H2O-mediated proton conductivities (σ) were fully assessed and compared. Notably, their σ evinced a significant positive correlation between the temperature or relative humidity (RH) and varied with the functional groups on the organic ligands. Impressively, their highest σ values are up to 10-3-10-4 S/cm (100 °C/98% RH) and change in this order: MIL-68-In-OH (1.72 × 10-3 S/cm) > MIL-68-In-NH2 (1.70 × 10-3 S/cm) > MIL-68-In-NO2 (4.47 × 10-4 S/cm) > MIL-68-In-Br (4.11 × 10-4 S/cm) > MIL-68-In (2.37 × 10-4 S/cm). Finally, the computed activation energy values under 98 or 68% RHs are assessed, and the related proton conduction mechanisms are speculated. Moreover, after electrochemical testing, these MOFs illustrate remarkable structural rigidity, laying a meritorious material foundation for future applications.

2.
Inorg Chem ; 62(29): 11570-11580, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37434493

RESUMO

With the gradual progress of research on proton-conducting metal-organic framework (MOFs), it has become a challenging task to find MOF materials that are easy to prepare and have low toxicity, high stability, and splendid proton conductivity. With the abovementioned objectives in mind, we selected the non-toxic organic ligand 2,5-furandicarboxylic acid and the low toxic quadrivalent metals zirconium(IV) or hafnium(IV) as starting materials and successfully obtained 2 three-dimensional porous MOFs, [M6O4(OH)4(FDC)4(OH)4(H2O)4] [M = ZrIV (1) and HfIV (2)], with ultrahigh water stability using a rapid and green synthesis approach. Their proton conductive ability is remarkable, thanks to the large number of Lewis acidic sites contained in their porous frameworks and the abundant H-bonding network, hydroxyl groups, as well as coordination and crystalline water molecules. The positive correlation of their proton conductivity with relative humidity (RH) and the temperature was observed. Notably, their optimized proton conductivities are 2.80 × 10-3 S·cm-1 of 1 and 3.38 × 10-3 S·cm-1 of 2 under 100 °C/98% RH, which are at the forefront of Zr(IV)/Hf(IV) MOFs with prominent proton conductivity. Logically, their framework features, nitrogen/water adsorption/desorption data, and activation energy values are integrated to deduce their proton conductivity and conducting mechanism differences.

3.
ACS Appl Mater Interfaces ; 15(27): 33148-33158, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37384833

RESUMO

Assembling crystalline materials with high stability and high proton conductivity as a potential alternative to the Nafion membrane is a challenging topic in the field of energy materials. Herein, we concentrated on the creation and preparation of hydrazone-linked COFs with super-high stability to explore their proton conduction. Fortunately, two hydrazone-linked COFs, TpBth and TaBth, were solvothermally prepared by using benzene-1,3,5-tricarbohydrazide (Bth), 2,4,6-trihydroxy-benzene-1,3,5-tricarbaldehyde (Tp), and 2,4,6-tris(4-formylphenyl)-1,3,5-triazine (Ta) as monomers. Their structures were simulated by Material Studio 8.0 software and confirmed by the PXRD pattern, demonstrating a two-dimensional framework with AA packing. The presence of a large number of carbonyl groups as well as -NH-NH2- groups on the backbone is responsible for their super-high water stability as well as high water absorption capacity. AC impedance tests demonstrated a positive correlation between the water-assisted proton conductivity (σ) of the two COFs and the temperature and humidity. Under 100 °C/98% RH, the highest σ values of TpBth and TaBth can reach 2.11 × 10-4 and 0.62 × 10-5 S·cm-1, which are among the high σ values of the reported COFs. Their proton-conductive mechanisms were highlighted by structural analyses as well as N2 and H2O vapor adsorption data and activation energy values. Our systematic research affords ideas for the synthesis of proton-conducting COFs with high σ values.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...