Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phytomedicine ; 123: 155237, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38056148

RESUMO

BACKGROUND: The prevention and treatment of ischaemic stroke is a worldwide challenge, and effective clinical treatment strategies are lacking. Studies have demonstrated the efficacy of Verbena officinalis in managing cerebrovascular disorders. However, the neuroprotective bioactive components and mechanisms remain unclear. PURPOSE: To investigate the pharmacological combinatorial components and mechanism underlying the anti-ischemic stroke effect of the ethanol extract of Verbena officinalis (VO Ex). STUDY DESIGN AND METHODS: The components of VO Ex were identified by HPLC. A middle cerebral artery occlusion (MCAO) induced brain injury model was used to assess the therapeutic effect of VO Ex. The activity of the chemical components of VO Ex was evaluated using a primary astrocyte injury model induced by oxygen-glucose deprivation/reperfusion (OGD/R). RNA sequencing was used to reveal the potential targets of VO Ex against cerebral ischemia-reperfusion injury (CIRI), and the results were verified by qRT-PCR and western blotting. The key components and target binding ability were predicted by molecular docking. Finally, the mechanism of combinatorial components was verified by experiments. RESULTS: The HPLC results indicated that the main ingredients of VO Ex were hastatoside, verbenalin, acteoside, luteolin, apigenin and hispidulin. In vivo experiments showed that VO Ex improved MCAO-induced acute cerebral ischemic injury. Transcriptomic data and biological experiments suggested that VO Ex exerted therapeutic effects through IL17A signalling pathways. The in vitro experiments indicated that verbenalin, acteoside, luteolin, apigenin and hispidulin exhibited neuroprotective activities. The novel formula of VALAH, derived from the aforementioned active ingredients, exhibited superior efficacy compared to each individual component. Molecular docking and mechanistic studies have confirmed that VALAH functions in the treatment of ischaemic stroke by suppressing the activation of the IL17A signalling pathway. CONCLUSION: This work is the first to reveal that VO Ex effectively inhibits the IL17A signaling pathway and mitigates neuroinflammation following ischemic stroke. Moreover, we identified the novel formula VALAH as the bioactive combinatorial components for VO Ex. Further research suggests that the activity of VALAH is associated with IL17A-mediated regulation of neuroinflammation. This finding provides new insights into the efficacious components and mechanisms of traditional Chinese medicine.


Assuntos
Isquemia Encefálica , Glucosídeos , Glicosídeos Iridoides , AVC Isquêmico , Polifenóis , Traumatismo por Reperfusão , Acidente Vascular Cerebral , Verbena , Humanos , Infarto da Artéria Cerebral Média/tratamento farmacológico , Isquemia Encefálica/tratamento farmacológico , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/complicações , Doenças Neuroinflamatórias , Apigenina , Luteolina/uso terapêutico , Simulação de Acoplamento Molecular , AVC Isquêmico/tratamento farmacológico , Traumatismo por Reperfusão/tratamento farmacológico , Interleucina-17
2.
Colloids Surf B Biointerfaces ; 230: 113530, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37683323

RESUMO

Cardiovascular metal stents have shown potential in the treatment of coronary artery disease using percutaneous coronary intervention. However, thrombosis, endothelialization, and new atherosclerosis after stent implantation remain unsolved problems. Herein, a multifunctional coating material based on phase-transited lysozyme was developed to promote stent endothelialization and simultaneously reduce thrombus events by embedding moieties of heparin and co-immobilized copper ions for in-situ catalyzing nitric oxide (NO) generation. The lysozyme-based biomimetic coating is compatible with blood and enables facile loading and sustainable release of copper ions to produce NO with donors via catalytic reaction. The novel coating strategy displayed several bio-effects of anti-thrombosis; it synergistically promoted endothelial cell growth and inhibited smooth muscle cell growth. Thus, this systemic in vitro study will provide a foundation for developing multifunctional cardiovascular stents in clinical settings.


Assuntos
Sistema Cardiovascular , Cobre , Heparina , Muramidase , Íons , Óxido Nítrico
3.
Adv Sci (Weinh) ; 10(26): e2300686, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37386815

RESUMO

An effective systemic mechanism regulates tumor development and progression; thus, a rational design in a one-stone-two-birds strategy is meant for cancer treatment. Herein, a hollow Fe3 O4 catalytic nanozyme carrier co-loading lactate oxidase (LOD) and a clinically-used hypotensor syrosingopine (Syr) are developed and delivered for synergetic cancer treatment by augmented self-replenishing nanocatalytic reaction, integrated starvation therapy, and reactivating anti-tumor immune microenvironment. The synergetic bio-effects of this nanoplatform stemmed from the effective inhibition of lactate efflux through blocking the monocarboxylate transporters MCT1/MCT4 functions by the loaded Syr as a trigger. Sustainable production of hydrogen peroxide by catalyzation of the increasingly residual intracellular lactic acid by the co-delivered LOD and intracellular acidification enabled the augmented self-replenishing nanocatalytic reaction. Large amounts of produced reactive oxygen species (ROS) damaged mitochondria to inhibit oxidative phosphorylation as the substituted energy supply upon the hampered glycolysis pathway of tumor cells. Meanwhile, remodeling anti-tumor immune microenvironment is implemented by pH gradient reversal, promoting the release of proinflammatory cytokines, restored effector T and NK cells, increased M1-polarize tumor-associated macrophages, and restriction of regulatory T cells. Thus, the biocompatible nanozyme platform achieved the synergy of chemodynamic/immuno/starvation therapies. This proof-of-concept study represents a promising candidate nanoplatform for synergetic cancer treatment.


Assuntos
Ácido Láctico , Neoplasias , Humanos , Ácido Láctico/metabolismo , Neoplasias/tratamento farmacológico , Transporte Biológico , Microambiente Tumoral
4.
Langmuir ; 38(20): 6265-6272, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35548911

RESUMO

Anisotropic self-assembly of nanoparticles (NPs) stems from the fine-tuning of their surface functionality and NP interaction. Strategies involving ligand interaction, protein interaction, and external stimulus have been developed. However, robust construction of monodispersed magnetic NPs to tens of microns of anisotropically aligned colloidal assembly triggered by adsorbed protein intermolecular interaction is yet to be elucidated. Here, we present the NP-protein interaction, magnetic force, and protein corona intermolecular interaction serially but independently induced path-dependent self-assembly of 100 nm Fe3O4@SiO2 nanocomposites. Dynamic formation of the micron-sized anisotropic magnetic assembly was reproducibly realized in a continuous medium in a controllable manner. Formation of the primary globular clusters upon the unique NP-protein complexes with the help of ions acts as the prerequisite for the anisotropic colloidal assembly, followed by the magnetic force-driven pre-organization and protein intermolecular electrostatic interaction-mediated elongation. The protein concentration rather than the protein original structure plays a more pivotal role in the NP-protein interaction and subsequent colloidal assembly process. Two typical serum proteins fibrinogen and bovine serum albumin enable formation of the anisotropic colloidal assembly but with a different subtle morphology. Furthermore, the obtained micron-sized magnetic colloidal assembly can be dissociated rapidly by adding a negative electrolyte in the medium due to the interference in the NP-protein interaction. However, the self-assembly process can be recycled based on the dissociated colloidal assembly.


Assuntos
Nanocompostos , Coroa de Proteína , Magnetismo , Nanocompostos/química , Dióxido de Silício , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...