Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Food Chem X ; 22: 101515, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38883914

RESUMO

To investigate the optimal processing of maize porridge, the volatile compounds and texture under different cooking methods and time have been studied. A total of 51 volatile compounds were identified in maize porridge. Notably, the major volatiles, aldehydes and esters exhibited a relatively high content in electric pressure cooker (EPC), and esters tend to significantly increase after cooking. Among aldehydes, nonanal and hexanal played a great role in flavor due to their relatively high content. Volatile compounds of maize porridge in different cooking methods could be clearly distinguished by multiple chemometrics. Furthermore, texture analysis revealed that almost all the indicators in the EPC can reach the lowest value at 60 min. To summarize, different cooking methods had a more significant influence on the volatile compounds and texture compared to time. This study helps to improve the sensory attributes of maize porridge, and thus contributes to healthier and more sustainable production.

2.
Food Funct ; 15(13): 7174-7188, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38895817

RESUMO

Background and aims: There is limited and conflicting evidence about the association of erythrocyte fatty acids with coronary artery disease (CAD), particularly in China where the CAD rates are high. Our study aimed to explore the association between erythrocyte fatty acid composition and CAD risk in Chinese adults. Methods: Erythrocyte fatty acids of 314 CAD patients and 314 matched controls were measured by gas chromatography. Multivariable conditional logistic regression and restricted cubic spline models were used to explore the odds ratio with 95% confidence interval (OR, 95% CI) and potential association between erythrocyte fatty acids and CAD risk. Principal component analysis (PCA) was used to analyze further the potential role of various erythrocyte fatty acid patterns in relation to CAD risk. Results: Significant inverse associations were observed between high levels of erythrocyte total n-3 polyunsaturated fatty acids (n-3 PUFA) [ORT3-T1 = 0.18 (0.12, 0.28)], monounsaturated fatty acids (MUFA) [ORT3-T1 = 0.21 (0.13, 0.32)], and the risk of CAD. Conversely, levels of saturated fatty acids (SFAs) and n-6 polyunsaturated fatty acids (n-6 PUFAs) were positively associated with CAD risk [ORT3-T1 = 3.33 (2.18, 5.13), ORT3-T1 = 1.61 (1.06, 2.43)]. No significant association was observed between CAD risk and total trans fatty acids. Additionally, the PCA identifies four new fatty acid patterns (FAPs). The risk of CAD was significantly positively associated with FAP1 and FAP2, while being negatively correlated with FAP3 and FAP4. Conclusion: The different types of erythrocyte fatty acids may significantly alter susceptibility to CAD. Elevated levels of n-3-PUFAs and MUFAs are considered as protective biomarkers against CAD, while SFAs and n-6 PUFAs may be associated with higher CAD risk in Chinese adults. The risk of CAD was positively associated with FAP1 and FAP2, and negatively associated with FAP3 and FAP4. Combinations of erythrocyte fatty acids may be more important markers of CAD development than individual fatty acids or their subgroups.


Assuntos
Doença da Artéria Coronariana , Eritrócitos , Ácidos Graxos , Humanos , Doença da Artéria Coronariana/sangue , Doença da Artéria Coronariana/epidemiologia , Doença da Artéria Coronariana/metabolismo , Masculino , Eritrócitos/metabolismo , Eritrócitos/química , Feminino , Pessoa de Meia-Idade , China/epidemiologia , Estudos de Casos e Controles , Ácidos Graxos/sangue , Idoso , Fatores de Risco , Adulto , Ácidos Graxos Ômega-3/sangue
3.
J Leukoc Biol ; 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38518381

RESUMO

Influenza virus infection is a worldwide challenge that causes heavy burdens on public health. The mortality rate of severe influenza patients is often associated with hyperactive immunological abnormalities characterized by hypercytokinemia. Due to the continuous mutations and the occurrence of drug-resistant influenza virus strains, the development of host-directed immunoregulatory drugs is urgently required. Platycodon grandiflorum is among the top 10 herbs of traditional Chinese medicine used to treat pulmonary diseases. As one of the major terpenoid saponins extracted from Platycodon grandiflorum, Platycodin D (PD) has been reported to play several roles, including anti-inflammation, analgesia, anti-cancer, hepatoprotection, and immunoregulation. However, the therapeutic roles of PD to treat influenza virus infection remains unknown. Here, we show that PD can protect the body weight loss in severely infected influenza mice, alleviate lung damage, and thus improve the survival rate. More specifically, PD protects flu mice via decreasing the immune cell infiltration into lungs and downregulating the overactivated inflammatory response. Western blot and immunofluorescence assays exhibited that PD could inhibit the activation of TAK1/IKK/NF-κB and MAPK pathways. Besides that, CETSA, SPR and immunoprecipitation assays indicated that PD binds with TRAF6 to decrease its K63 ubiquitination after R837 stimulation. Additionally, siRNA interference experiments exhibited that PD could inhibit the secretion of IL-1ß and TNF-α in TRAF6-dependent manner. Altogether, our results suggested that PD is a promising drug candidate for treating influenza. Our study also offered a scientific explanation for the commonly used Platycodon grandiflorum in many anti-epidemic classic formulas. Due to its host-directed regulatory role, PD may serve as an adjuvant therapeutic drug in conjunction with other antiviral drugs to treat the flu.

5.
Int Immunopharmacol ; 132: 111889, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38531202

RESUMO

Host-directed therapy (HDT) is a new adjuvant strategy that interfere with host cell factors that are required by a pathogen for replication or persistence. In this study, we assessed the effect of dehydrozaluzanin C-derivative (DHZD), a modified compound from dehydrozaluzanin C (DHZC), as a potential HDT agent for severe infection. LPS-induced septic mouse model and Carbapenem resistant Klebsiella pneumoniae (CRKP) infection mouse model was used for testing in vivo. RAW264.7 cells, mouse primary macrophages, and DCs were used for in vitro experiments. Dexamethasone (DXM) was used as a positive control agent. DHZD ameliorated tissue damage (lung, kidney, and liver) and excessive inflammatory response induced by LPS or CRKP infection in mice. Also, DHZD improved the hypothermic symptoms of acute peritonitis induced by CRKP, inhibited heat-killed CRKP (HK-CRKP)-induced inflammatory response in macrophages, and upregulated the proportions of phagocytic cell types in lungs. In vitro data suggested that DHZD decreases LPS-stimulated expression of IL-6, TNF-α and MCP-1 via PI3K/Akt/p70S6K signaling pathway in macrophages. Interestingly, the combined treatment group of DXM and DHZD had a higher survival rate and lower level of IL-6 than those of the DXM-treated group; the combination of DHZD and DXM played a synergistic role in decreasing IL-6 secretion in sera. Moreover, the phagocytic receptor CD36 was increased by DHZD in macrophages, which was accompanied by increased bacterial phagocytosis in a clathrin- and actin-dependent manner. This data suggests that DHZD may be a potential drug candidate for treating bacterial infections.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Macrófagos , Fagocitose , Sepse , Animais , Camundongos , Fagocitose/efeitos dos fármacos , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/imunologia , Klebsiella pneumoniae/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Células RAW 264.7 , Sepse/tratamento farmacológico , Sepse/imunologia , Masculino , Lipopolissacarídeos , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos , Citocinas/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
6.
Chemosphere ; 350: 141073, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38171395

RESUMO

As a new electrode material for electrochemical systems, covalent organic framework (COF) materials have been gradually applied to bioelectrochemical systems. In our previous study, the COFBTA-DPPD-rGO composite was synthesized via Schiff-base coupling between benzene-1,3,5-tricarbaldehyde (BTA) and 3,8-diamino-6-phenylphenanthridine (DPPD) on reduced graphene oxide (rGO) at room temperature. Here, COFBTA-DPPD-rGO modified MFC anode was used to assist microorganisms to decolorize methyl orange (MO), and the properties of MFCs were studied. The results showed that compared to the unmodified electrode MFC (28 mA m-2, 4.20 mW m-2) the current density and maximum power density of the anode MFC modified by COFBTA-DPPD-rGO (134.5 mA m-2, 21.78 mW m-2) were increased by 380.3% and 423.6%, respectively. The transferred electron number n and charge transfer coefficient α of the modified COFBTA-DPPD-rGO anode (4 and 0.43) compared to the unmodified electrode (2.4 and 0.38) were increased by 67% and 13%, respectively. The decolorization ratio of MO could reach 90.3% at 10 h. Compared with the unmodified electrode MFC (53.0%), the decolorization ratio and kinetic constant of decolorization process were enhanced by 26% and 372%, respectively. Therefore, COFBTA-DPPD-rGO could be a new choice for applying to the MFCs.


Assuntos
Compostos Azo , Fontes de Energia Bioelétrica , Grafite , Estruturas Metalorgânicas , Fenilenodiaminas , Shewanella , Elétrons , Eletrodos
7.
Heliyon ; 10(1): e23225, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38170002

RESUMO

Bacterial infection remains a big concern in the patients of ICU, which is the main cause of life-threatening organ dysfunction, or even sepsis. The poor control of bacterial infection caused by antibiotic resistance, etc. or the overwhelming immune response are the most important patho genic factors in intensive care unit (ICU) patients. As main pathogens, antibiotic-resistant bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA), impose serious challenges during sepsis and require alternative therapeutic options. Irisflorentin (IFL) is one of the major bioactive compounds isolated from the roots of Belamcanda chinensis (Shegan). In this study, IFL could suppress inflammatory response induced by MRSA or a synthetic mimic of bacterial lipoprotein (Pam3CSK4). IFL treatment enhanced the ability of macrophages to phagocytose bacteria likely through up-regulating the expression of phagocytic receptors SR-A1 and FcγR2a. Furthermore, IFL inhibited Pam3CSK4-induced production of pro-inflammatory cytokines, including IL-6 and TNF-α in Raw 264.7 cells, mouse primary macrophages or dendritic cells. IFL treatment also inhibited heat-killed MRSA-induced secretion of IL-6 and TNF-α in mouse bone marrow-derived macrophages. Moreover, IFL attenuated M1 polarization of macrophages as indicated by the down-regulated expression of its polarization markers CD86 and iNOS. Mechanistically, IFL markedly decreased the Pam3CSK4-induced activation of ERK, JNK or p38 MAPK pathways in macrophages. Taken together, IFL may serve as a promising compound for the therapy of bacterial infection, particularly those caused by antibiotic-resistant bacteria, such as MRSA.

8.
J Ethnopharmacol ; 321: 117553, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38065349

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Fei-Yan-Qing-Hua decoction (FYQHD), derived from the renowned formula Ma Xing Shi Gan tang documented in Zhang Zhong Jing's "Treatise on Exogenous Febrile Disease" during the Han Dynasty, has demonstrated notable efficacy in the clinical treatment of pneumonia resulting from bacterial infection. However, its molecular mechanisms underlying the therapeutic effects remains elusive. AIM OF THE STUDY: This study aimed to investigate the protective effects of FYQHD against lipopolysaccharide (LPS) and carbapenem-resistant Klebsiella pneumoniae (CRKP)-induced sepsis in mice and to elucidate its specific mechanism of action. MATERIALS AND METHODS: Sepsis models were established in mice through intraperitoneal injection of LPS or CRKP. FYQHD was administered via gavage at low and high doses. Serum cytokines, bacterial load, and pathological damage were assessed using enzyme-linked immunosorbent assay (ELISA), minimal inhibitory concentration (MIC) detection, and hematoxylin and eosin staining (H&E), respectively. In vitro, the immunoregulatory effects of FYQHD on macrophages were investigated through ELISA, MIC, quantitative real-time PCR (Q-PCR), immunofluorescence, Western blot, and a network pharmacological approach. RESULTS: The application of FYQHD in the treatment of LPS or CRKP-induced septic mouse models revealed significant outcomes. FYQHD increased the survival rate of mice exposed to a lethal dose of LPS to 33.3%, prevented hypothermia (with a rise of 3.58 °C), reduced pro-inflammatory variables (including TNF-α, IL-6, and MCP-1), and mitigated tissue damage in LPS or CRKP-induced septic mice. Additionally, FYQHD decreased bacterial load in CRKP-infected mice. In vitro, FYQHD suppressed the expression of inflammatory cytokines in macrophages activated by LPS or HK-CRKP. Mechanistically, FYQHD inhibited the PI3K/AKT/mTOR/4E-BP1 signaling pathway, thereby suppressing the translational level of inflammatory cytokines. Furthermore, it reduced the expression of HMGB1/RAGE, a positive feedback loop in the inflammatory response. Moreover, FYQHD was found to enhance the phagocytic activity of macrophages by upregulating the expression of phagocytic receptors such as CD169 and SR-A1. CONCLUSION: FYQHD provides protection against bacterial sepsis by concurrently inhibiting the inflammatory response and augmenting the phagocytic ability of immune cells.


Assuntos
Proteína HMGB1 , Sepse , Camundongos , Animais , Lipopolissacarídeos/farmacologia , Proteína HMGB1/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Citocinas/metabolismo , Fagocitose , Sepse/tratamento farmacológico
9.
Int J Mol Sci ; 24(24)2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38139381

RESUMO

Melon (Cucumis melo L.) represents an agriculturally significant horticultural crop that is widely grown for its flavorful fruits. Downy mildew (DM), a pervasive foliar disease, poses a significant threat to global melon production. Although several quantitative trait loci related to DM resistance have been identified, the comprehensive genetic underpinnings of this resistance remain largely uncharted. In this study, we utilized integrative transcriptomics and metabolomics approaches to identify potential resistance-associated genes and delineate the strategies involved in the defense against DM in two melon cultivars: the resistant 'PI442177' ('K10-1') and the susceptible 'Huangdanzi' ('K10-9'), post-P. cubensis infection. Even in the absence of the pathogen, there were distinctive differentially expressed genes (DEGs) between 'K10-1' and 'K10-9'. When P. cubensis was infected, certain genes, including flavin-containing monooxygenase (FMO), receptor-like protein kinase FERONIA (FER), and the HD-ZIP transcription factor member, AtHB7, displayed pronounced expression differences between the cultivars. Notably, our data suggest that following P. cubensis infection, both cultivars suppressed flavonoid biosynthesis via the down-regulation of associated genes whilst concurrently promoting lignin production. The complex interplay of transcriptomic and metabolic responses elucidated by this study provides foundational insights into melon's defense mechanisms against DM. The robust resilience of 'K10-1' to DM is attributed to the synergistic interaction of its inherent transcriptomic and metabolic reactions.


Assuntos
Cucurbitaceae , Oomicetos , Peronospora , Cucurbitaceae/genética , Oomicetos/genética , Perfilação da Expressão Gênica , Mecanismos de Defesa , Doenças das Plantas/genética
10.
ACS Biomater Sci Eng ; 9(11): 6241-6255, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37823558

RESUMO

Novel full-thickness skin substitutes are of increasing interest due to the inherent limitations of current models lacking capillary networks. Herein, we developed a novel full-thickness skin tissue containing blood capillary networks through a layer-by-layer assembly approach using a handy electrospinning apparatus and evaluated its skin wound coverage potential in vivo. The average diameter and thickness of fabricated poly-ε-caprolactone-cellulose acetate scaffolds were easily tuned in the range of 474 ± 77-758 ± 113 nm and 9.43 ± 2.23-29.96 ± 5.78 µm by varying electrospinning distance and duration, as indicated by FE-SEM. Besides, keratinocytes exhibited homogeneous differentiation throughout the fibrous matrix prepared with electrospinning distance and duration of 9 cm and 1.5 min within five-layer (5L) epidermal tissues with thickness of 135-150 µm. Moreover, coculture of vascular endothelial cells, circulating fibrocytes, and fibroblasts within the 5L dermis displayed network formation in vitro, resulting in reduced inflammatory factor levels and enhanced integration with the host vasculature in vivo. Additionally, the skin equivalent grafts consisting of the epidermal layer, biomimetic basement membrane, and vascularized dermis layer with an elastic modulus of approximately 11.82 MPa exhibited accelerated wound closure effect indicative of re-epithelialization and neovascularization with long-term cell survival into the host, which was confirmed by wound-healing rate, bioluminescence imaging activity, and histological analysis. It is the first report of a full-thickness skin equivalent constructed using a battery-operated electrospinning apparatus, highlighting its tremendous potential in regenerative medicine.


Assuntos
Células Endoteliais , Pele , Pele/irrigação sanguínea , Queratinócitos , Cicatrização , Transplante de Pele
11.
Food Chem X ; 18: 100707, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37397187

RESUMO

The olive vegetable is popular food owing to its unique flavor. This study innovatively used headspace-gas chromatography-ion mobility spectrometry to evaluate olive vegetables' volatiles under different conditions. A total of 57 volatile compounds were determined from olive vegetables, including 30 aldehydes, 8 ketones, 5 alcohols, 2 esters, 8 hydrocarbons, 1 furans, 3 sulfur compounds. The PCA distinguished the olive vegetable stored at different conditions by volatiles. The gallery plot showed that olive vegetables stored at 4 °C for 21 d produced more limonene, which had a desirable fruity odor. The (E)-2-octenal, (E)-2-pentenal, (E,E)-2,4-heptadienal, 5-methylfurfural, and heptanal in fresh olive vegetables were lowest and increased with storage time. Furthermore, the change of volatiles was the least when the olive vegetable was stored at 0 °C. This study can provide theoretical bases for improving the flavor quality of olive vegetables and developing traditional food for standardized industrial production.

12.
Crit Rev Food Sci Nutr ; : 1-28, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37222574

RESUMO

Literature is inconsistent regarding the effects of omega-3 polyunsaturated fatty acids (omega-3 PUFAs) supplementation on patients with metabolic syndrome (MetS) and related cardiovascular diseases (CVDs). Therefore, the aim of this systematic review and meta-analysis is to summarize data from available randomized controlled trials (RCTs) on the effect of omega-3 PUFAs on lipid profiles, blood pressure, and inflammatory markers. We systematically searched PubMed, Embase, and Cochrane Library databases to identify the relevant RCTs until 1 November 2022. Weighed mean difference (WMD) was combined using a random-effects model. Standard methods were applied to assess publication bias, sensitivity analysis, and heterogeneity among included studies. A total of 48 RCTs involving 8,489 subjects met the inclusion criteria. The meta-analysis demonstrated that omega-3 PUFAs supplementation significantly reduced triglyceride (TG) (WMD: -18.18 mg/dl; 95% CI: -25.41, -10.95; p < 0.001), total cholesterol (TC) (WMD: -3.38 mg/dl; 95% CI: -5.97, -0.79; p = 0.01), systolic blood pressure (SBP) (WMD: -3.52 mmHg; 95% CI: -5.69, -1.35; p = 0.001), diastolic blood pressure (DBP) (WMD: -1.70 mmHg; 95% CI: -2.88, -0.51; p = 0.005), interleukin-6 (IL-6) (WMD: -0.64 pg/ml; 95% CI: -1.04, -0.25; p = 0.001), tumor necrosis factor-α (TNF-α) (WMD: -0.58 pg/ml; 95% CI: -0.96, -0.19; p = 0.004), C-reactive protein (CRP) (WMD: -0.32 mg/l; 95% CI: -0.50, -0.14; p < 0.001), and interleukin-1 (IL-1) (WMD: -242.95 pg/ml; 95% CI: -299.40, -186.50; p < 0.001), and significantly increased in high-density lipoprotein (HDL) (WMD: 0.99 mg/dl; 95% CI: 0.18, 1.80; p = 0.02). However, low-density lipoprotein (LDL), monocyte chemoattractant protein-1 (MCP-1), intracellular adhesion molecule-1 (ICAM-1), and soluble endothelial selectin (sE-selectin) were not affected. In subgroup analyses, a more beneficial effect on overall health was observed when the dose was ≤ 2 g/day; Omega-3 PUFAs had a stronger anti-inflammatory effect in patients with CVDs, particularly heart failure; Supplementation with omega-3 PUFAs was more effective in improving blood pressure in MetS patients and blood lipids in CVDs patients, respectively. Meta-regression analysis showed a linear relationship between the duration of omega-3 PUFAs and changes in TG (p = 0.023), IL-6 (p = 0.008), TNF-α (p = 0.005), and CRP (p = 0.025). Supplementation of omega-3 PUFAs had a favorable effect on improving TG, TC, HDL, SBP, DBP, IL-6, TNF-α, CRP, and IL-1 levels, yet did not affect LDL, MCP-1, ICAM-1, and sE-selectin among patients with MetS and related CVDs.

13.
Front Bioeng Biotechnol ; 11: 1163405, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37008026

RESUMO

Introduction: The side effects of conventional therapy for acute deep vein thrombosis (DVT) are severe, with inflammatory reactions playing a pivotal role. It is particularly important to explore new ways of treatment thrombosis by targeting inflammatory factors. Methods: A targeted microbubble contrast agent was prepared using the biotin-avidin method. The 40 DVT model rabbits were established and divided into four groups according to different treatment regimens. The four coagulation indexes, TNF-α, and D-dimer content of experimental animals were measured before modeling and before and after treatment, and the thrombolysis was assessed by ultrasound imaging. Finally, the results were verified by pathology. Results and Discussion: Fluorescence microscopy verified the successful preparation of targeted microbubbles. Among the groups, PT, APTT, and TT in Group II-IV were longer than those in Group I (all p < 0.05). FIB and D-dimer content were lower than those in Group I (all p < 0.05), and TNF-α content in Group IV was lower than that in Group I-III (all p < 0.05). Pairwise comparison before modeling and before treatment and after treatment showed that, after treatment, the PT, APTT, and TT in Group II-IV were longer than those before modeling (all p < 0.05). The contents of FIB and D-dimer were lower than those before modeling and before treatment (all p < 0.05). The content of TNF-α decreased significantly only in Group IV, but increased in the other three groups. Targeted microbubbles combined with Low-power focused ultrasound can reduce inflammation, significantly promote thrombolysis, and provide new ideas and methods for the diagnosis and treatment of acute DVT.

14.
Food Chem X ; 17: 100588, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36845519

RESUMO

Bischofia polycarpa seed oil is rich in nutrition and positively affects on human health. We analyzed and compared the chemical compositions, antioxidant activities, and quality characteristics of Bischofia polycarpa seed oils using different solvents and cold-pressing. Hx: Iso (n-hexane/isopropanol, 3:2 v/v) had the highest lipid yield (35.13 %), while Folch (chloroform/methanol, 2:1 v/v) had the highest linolenic acid (50.79 %), LnLnLn (43.42 %), and LnLnL (23.43 %). Tocopherols (2108.99 mg/kg) were extracted most efficiently with Folch, whereas phytosterols (3852.97 mg/kg) and squalene (55.21 mg/kg) were extracted most efficiently with petroleum ether. Although the lower phytosterol was obtained using isopropanol, the polyphenol content (271.34 mg GAE/kg) was significantly higher than other solvents, showing the best antioxidant ability. Additionally, polyphenols were observed to be the most significant factor predicting antioxidant activity from the correlation analysis. The above information can provide a useful reference for manufacturers to obtain satisfactory Bischofia polycarpa seed oil.

15.
Environ Technol ; 44(8): 1061-1070, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34651547

RESUMO

This paper designs and builds a small constructed wetland test site to study the internal hydraulic characteristics of different types of constructed wetlands, conducts NaCl pulse tracing experiments, and fits the residence time distribution (RTD) with the CSTRs+PFD model (Continuous Stirred-Tank Reactor model in parallel with Plug Flow with Dispersion model). The results showed that, among the six types of constructed wetlands, hydraulic parameters of horizontal subsurface flow constructed wetlands with baffles had the best performance, with a tracer recovery rate (F(t)) reaching 43.67% and hydraulic efficiency (λ) reaching 0.81. The addition of baffles slowed flow velocity, increased mean hydraulic retention time (Tm) and peak residence time (Tp), and reduced the short circuits phenomenon. The velocity of internal water flow increased during the horizontal and vertical deflections, which could well avoid the stagnation phenomenon caused by complicated flow state, thereby improving the hydraulic efficiency (λ). The CSTRs+PFD model can better fit the RTD of 6 different types of constructed wetlands. The peak value of the fitted curve, the time to reach the peak and the slope of the curve are all very similar to the measured RTD.


Assuntos
Eliminação de Resíduos Líquidos , Áreas Alagadas , Eliminação de Resíduos Líquidos/métodos
16.
Food Chem X ; 17: 100530, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36478708

RESUMO

Green plum is popular due to its tasty flavor and nutritional benefits. This study investigated the volatiles of oils extracted from the green plum seed using the headspace-gas chromatography-ion mobility spectrometry. A total of 42 volatiles were identified in the oil of green plum seed kernel and shell. By principal component analysis, a distinct separation between the seed kernel oil and shell oil was observed. The gallery plot showed that seed kernel oil had more desirable flavor compounds, such as ethyl acetate, 1-pentanol, 2-pentylfuran, and 2-heptanone. However, seed shell oil contained more alkenals with a fatty odor and acetic acid with a pungent odor. The green plum seed oils were rich in oleic acid (>45 g/100 g), linoleic acid (>35 g/100 g), and minor bioactive components, i.e., tocopherol, phytosterol, and squalene. The shell oil had more total tocopherol (95.35 mg/kg) and ß-Sitosterol (80.70 %) compared to kernel oil. Therefore, green plum seed oil can be sustainably used as an edible oil.

17.
Oxid Med Cell Longev ; 2022: 3639302, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36193086

RESUMO

Polycystic ovary syndrome (PCOS) is one of the most common hormonal disorders among premenopausal women. PCOS is accompanied by many other reproductive, endocrinal, and metabolic disorders thus amassing the difficulties encountered by the women affected. However, there is limited information on its molecular etiology. Synoviolin (SYVN1) is an E3 ubiquitin ligase that is thought to participate in the pathology of PCOS. However, the expression and function of SYVN1 in PCOS are unknown. In this study, we found that downregulation of SYVN1 expression was followed by increased apoptosis in the granulosa cells (GCs) of patients with PCOS. Subsequent in vitro experiments indicated that the overexpression of SYVN1 inhibited apoptosis and mitochondrial fission. Furthermore, using immunoprecipitation and western blotting, we identified that SYVN1 promoted the degradation of Drp1 via the proteasome-dependent pathway. Additionally, we generated a PCOS model in female Sprague Dawley rats and treated them with an SYVN1 inhibitor, LS-102. We observed that the inhibition of SYVN1 increased Drp1 levels and exacerbated the degeneration of GCs in the PCOS rat model. Finally, in vitro and in vivo experiments showed that SYVN1 inhibits apoptosis and mitochondrial fission by promoting Drp1 degradation in GCs. These results highlight the function of SYVN1 in PCOS and provide a potential target for the clinical treatment of PCOS.


Assuntos
Síndrome do Ovário Policístico , Animais , Apoptose , Feminino , Células da Granulosa/metabolismo , Humanos , Dinâmica Mitocondrial , Síndrome do Ovário Policístico/tratamento farmacológico , Complexo de Endopeptidases do Proteassoma/metabolismo , Ratos , Ratos Sprague-Dawley , Ubiquitina-Proteína Ligases/metabolismo
18.
Food Res Int ; 159: 111643, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35940816

RESUMO

Trichosanthes kirilowii Maxim seed is a primary source of edible vegetable oil and possesses a high nutritional value, making them extremely beneficial to humanity. To promote the extraction process of Trichosanthes kirilowii Maxim seed oil, the effect of microwave heating time (700 W for 0, 2, 4, and 6 min) on lipid composition, chemical properties, and antioxidant activity of oils was studied. The results showed that the oil yield of the seed increased with the microwave heating time. Besides, microwave heating time significantly affects (p < 0.05) DPPH and tocopherols, and the IC50 value of DPPH was highest with microwave heating for 6 min, whatever the shells are reserved. The tocopherol content was highest with microwave heating for 2 min in the seed shell oil, which was 1930.60 mg/kg. The longer microwave heating time could improve the oil yield and antioxidant activity of Trichosanthes kirilowii Maxim seed oil. The seed shell also affects chemical properties, fatty acid composition, antioxidant activity, and tocopherol contents of the Trichosanthes kirilowii Maxim seed oil. The Trichosanthes kirilowii Maxim seed shell oil has higher DPPH and tocopherols contents than seed kernel oil, while seed kernel oils showed higher oil yield and acid value. Our finding is valuable for manufacturers to choose suitable means to produce Trichosanthes kirilowii Maxim seed oil of required qualities and chemical compositions for targeted use.


Assuntos
Trichosanthes , Antioxidantes/análise , Calefação , Micro-Ondas , Óleos de Plantas/análise , Sementes/química , Tocoferóis/análise , Trichosanthes/química
19.
Int J Biol Sci ; 18(9): 3800-3817, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35813467

RESUMO

Background : Acetaminophen (APAP)-induced liver injury (AILI) is a common cause of drug-induced liver injury (DILI). The mechanism underlying protection in AILI or DILI remains to be elucidated, and the role of early growth response 1 (Egr1) in AILI and potential mechanisms remain to be known. Methods : The role of Egr1 was studied both in vivo and in vitro. Liver-specific Egr1-knockout (Egr1LKO) mice and those overexpressing Egr1 via tail vein injection of Egr1-expressing adenovirus (Ad-Egr1) were utilized with AILI. Chromatin immunoprecipitation-sequencing, RNA-sequencing, seahorse XF analysis, and targeted fatty acid analysis were performed. EGR1 levels were also studied in liver tissues and serum samples from AILI/DILI patients. Results: In this study, we have demonstrated that Egr1 was upregulated in AILI models in vivo and in vitro. liver-specific Egr1 knockout aggravated AILI; however, Ad-Egr1 treatment ameliorated this. Mechanistically, Egr1 deficiency inhibited, whereas overexpression promoted, mitochondrial respiratory function and fatty acid ß-oxidation (FAO) activity in AILI. Egr1 transcriptionally upregulated FAO-related genes in hepatocytes. Notably, the knockdown of acetyl-coenzyme A acyltransferase 2 (Acaa2), a key gene involved in FAO, diminished this protective effect of Egr1. Clinically, EGR1 was markedly increased in liver tissues from AILI patients. Interestingly, EGR1 levels of liver tissues and serum samples were also obviously higher in idiosyncratic DILI patients. Conclusions: Egr1 confers adaptive protection in AILI, mediated via the transcriptional upregulation of Acaa2, which improves mitochondrial FAO, and might be a potential biomarker and novel therapeutic target for AILI.


Assuntos
Acetaminofen , Doença Hepática Induzida por Substâncias e Drogas , Acetaminofen/toxicidade , Acetil-CoA C-Aciltransferase , Aciltransferases/farmacologia , Animais , Doença Hepática Induzida por Substâncias e Drogas/genética , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/farmacologia , Ácidos Graxos , Fígado , Camundongos , Camundongos Endogâmicos C57BL
20.
Biochim Biophys Acta Mol Basis Dis ; 1868(9): 166450, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35598770

RESUMO

BACKGROUND: Ischemic heart diseases and ischemic stroke are closely related to circadian clock and unstable atherosclerotic plaques. Vascular smooth muscle cells (VSMCs) can stabilize or destabilize an atherosclerotic lesion through phenotypic switch. BMAL1 is not only an indispensable core component in circadian clock but also an important regulator in atherosclerosis and VSMCs proliferation. However, little is known about the modulation mechanisms of BMAL1 in VSMCs phenotypic switch and atherosclerotic plaque stability. METHODS: We integrated histological analysis of human plaques, in vivo experiments of VSMC-specific Bmal1-/- mice, in vitro experiments, and gene set enrichment analysis (GSEA) of public datasets of human plaques to explore the function of BMAL1 in VSMCs phonotypic switch and plaque stability. FINDINGS: Comparing to human unstable plaques, BMAL1 was higher in stable plaques, accompanied by elevated YAP1 and fibroblast maker FSP1 which were positively correlated with BMAL1. In response to Methyl-ß-cyclodextrin-cholesterol, oxidized-low-density-lipoprotein and platelet-derived-growth-factor-BB, VSMCs embarked on phenotypic switch and upregulated BMAL, YAP1 and FSP1. Besides, BMAL1 overexpression promoted VSMCs phonotypic switch towards fibroblast-like cells by transcriptionally upregulating the expression of YAP1. BMAL1 or YAP1 knock-down inhibited VSMCs phonotypic switch and downregulated FSP1. Furthermore, VSMC-specific Bmal1-/- mice exhibited VSMCs with lower YAP1 and FSP1 levels, and more vulnerable plaques with less collagen content. In addition, BMAL1 suppressed the migration of VSMCs. The GSEA results of public datasets were consistent with our laboratory findings. INTERPRETATION: Our results highlight the importance of BMAL1 as a major regulator in VSMCs phenotypic switch towards fibroblast-like cells which stabilize an atherosclerotic plaque.


Assuntos
Fatores de Transcrição ARNTL/metabolismo , Aterosclerose , Placa Aterosclerótica , Proteínas de Sinalização YAP/metabolismo , Fatores de Transcrição ARNTL/genética , Animais , Aterosclerose/metabolismo , Fibroblastos/metabolismo , Camundongos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Placa Aterosclerótica/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...