Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 15(2): 371-379, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38175525

RESUMO

Reactive force field (ReaxFF) is a commonly used force field for modeling chemical reactions at the atomic level. Recently, JAX-ReaxFF, combined with automatic differentiation, has been used to efficiently parametrize ReaxFF. However, its analytical formula may lead to inaccurate predictions. While neural network-based potentials (NNPs) trained on density functional theory-labeled data offer a more accurate method, it requires a large amount of training data to be trained from scratch. To overcome these issues, we present a multiple-fidelity method that combines JAX-ReaxFF and NNP and apply the method on MoS2, a promising two-dimensional semiconductor for flexible electronics. By incorporating implicit prior physical information, ReaxFF can serve as a cost-effective way to generate pretraining data, facilitating more accurate simulations of MoS2. Moreover, in the Mo-S-H system, the pretraining strategy can reduce root-mean-square errors of energy by 20%. This approach can be extended to a wide variety of material systems, accelerating their computational research.

2.
J Am Chem Soc ; 143(42): 17431-17440, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34657417

RESUMO

Herein we demonstrate that ionic liquids can form long-lived double layers, generating electric fields detectable by straightforward open circuit potential (OCP) measurements. In imidazolium-based ionic liquids an external negative voltage pulse leads to an exceedingly stable near-surface dipolar layer, whose field manifests as long-lived (∼1-100 h) discrete plateaus in OCP versus time traces. These plateaus occur within an ionic liquid-specific and sharp potential window, defining a simple experimental method to probe the onset of interfacial ordering phenomena, such as overscreening and crowding. Molecular dynamics modeling reveals that the OCP arises from the alignment of the individual ion dipoles to the external electric field pulse, with the magnitude of the resulting OCP correlating with the product of the projected dipole moment of the cation and the ratio between the cation diffusion coefficient and its volume. Our findings also reveal that a stable overscreened structure is more likely to form if the interface is first forced through crowding, possibly accounting for the scattered literature data on relaxation kinetics of near-surface structures in ionic liquids.

3.
Nat Commun ; 11(1): 6323, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33303749

RESUMO

The evolution of gaseous products is a feature common to several electrochemical processes, often resulting in bubbles adhering to the electrode's surface. Adherent bubbles reduce the electrode active area, and are therefore generally treated as electrochemically inert entities. Here, we show that this general assumption does not hold for gas bubbles masking anodes operating in water. By means of imaging electrochemiluminescent systems, and by studying the anisotropy of polymer growth around bubbles, we demonstrate that gas cavities adhering to an electrode surface initiate the oxidation of water-soluble species more effectively than electrode areas free of bubbles. The corona of a bubble accumulates hydroxide anions, unbalanced by cations, a phenomenon which causes the oxidation of hydroxide ions to hydroxyl radicals to occur at potentials at least 0.7 V below redox tabled values. The downhill shift of the hydroxide oxidation at the corona of the bubble is likely to be a general mechanism involved in the initiation of heterogeneous electrochemical reactions in water, and could be harnessed in chemical synthesis.

4.
J Am Chem Soc ; 142(29): 12826-12833, 2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32610899

RESUMO

Herein, we employ classical molecular dynamics simulations using the Drude oscillator-based polarizable force field, quantum chemical calculations, and ONIOM multiscale calculations to study (a) how an external field orders the solvent environment in a chemical reaction and then (b) whether in the absence of this same applied field the ordered solvent environment alone can electrostatically catalyze a chemical reaction when compared with the corresponding disordered solvent. Our results show that a 0.2 V/Å external electric field, which is below the threshold for bond breaking of solvent molecules, leads to significant ordering of bulk methanol solvent and the ionic liquid [EMIM][BF4]. Importantly, in the absence of this same field, the ordered solvent lowers the activation energy of the hydrogen-transfer reaction of o-alkylphenyl ketones in excess of 20 kcal/mol when the solvent is methanol and by over 30 kcal/mol for [EMIM][BF4]. Even a 0.1 V/Å external field has effects of ca. 10 and 20 kcal/mol, respectively. This work suggests a possible strategy for scaling electrostatic catalysis by applying a pulsed external field to the reaction medium to maintain solvent ordering while allowing the reaction to proceed largely in the absence of an external field.

6.
J Chem Theory Comput ; 15(12): 6958-6967, 2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31657916

RESUMO

The optimal electrostatic scaling factor (ESF) for the calculation of solvation Gibbs free energies with the polarizable continuum model (PCM) was determined via extensive benchmarking against 1719 experimental solvation Gibbs free energies and transfer free energies taken from the MNSol-v2012 database, as well as 45 aqueous pKa values covering nine solute types (amines, thiols, carbon acid cations, pyridines, alcohols, anilines, carboxylic acids, carbon acid neutrals, phenols) and 20 pKa values in acetonitrile covering four solute types (phenols, carbon acids, carboxylic acids, pyridines). Optimal values for the ESF in a range of solvents are reported. For example, in water, the optimal ESF value is 1.2 and this does not vary with solute charge, radius type, or method. For acetonitrile, we recommend 1.1 for neutrals, 1.0 and 1.1 respectively for cations with UAHF and UAKS radii types, 1.3 for anions for IEFPCM-UAHF, and 1.4 for other anions. At the same time, we show that ESF optimization does not address all errors in PCM, and is thus not a substitute for the appropriate use of explicit solvent molecules, nor for the use of isodesmic methods to enhance systematic error cancellation. For a representative subset of the data we show that the errors in PCM are somewhat larger than in SMD and somewhat smaller than in COSMO-RS, although the latter has not benefited from cavity scaling.

7.
J Phys Chem A ; 123(34): 7430-7438, 2019 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-31382743

RESUMO

Many approaches have been used to improve the accuracy of implicit solvent models including solute cavity scaling, introducing explicit solvent molecules, and changing the level of theory for the solvation calculations. Here, we compare these strategies using a large test set of aqueous pKa values for amines, nucleobases, carboxylic acids, thiols, peptide carbon acids, alcohols, and anilines for the specific case of solvation model density (SMD) within the framework of a thermodynamic cycle in which the gas-phase component is consistently calculated via the accurate CBS-QB3 method. We show that the choice of theoretical level for solvation energies should be based on the original parameterization of the solvent model, with separate levels of theory for the solvation energies of neutrals, anions, or cations, outperforming the best compromise level of theory. However, when explicit solvent molecules are introduced, a higher level of theory is needed to describe the solute-solvent interactions. For the systems studied here, explicit solvation improved the results for acids (and hence anions) but not for bases, for which results deteriorated. Importantly, we find that solute cavity scaling does not significantly improve the SMD results for the CHNO compounds tested when the correct theoretical level is employed and explicit solvent effects are correctly treated.

8.
Phys Chem Chem Phys ; 20(19): 13178-13190, 2018 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-29717314

RESUMO

A self-consistent state specific (SS) method in the framework of TDDFT is presented to account for solvent effects on absorption and emission processes for molecules in solution. In these processes, the initial state is an equilibrium state, while the polarization of the solvent is in nonequilibrium with the electron density of the solute in the final state. Nonequilibrium solvation free energy is calculated based on a novel nonequilibrium solvation model with constrained equilibrium manipulation. The bulk solvent effects are considered using the polarizable continuum method (PCM), where the solvent-solute interaction is described with a reaction field. Molecular orbitals and orbital energies in the presence of the reaction field corresponding to the excited state are employed and the response of the solvent is not included in the TDDFT calculations. A self-consistent procedure is designed to obtain the excited state reaction field. The equations based on this new nonequilibrium solvation model in the framework of the self-consistent SS-PCM/TDDFT method for calculation of vertical absorption and emission energies are presented and implemented in the Q-Chem package. Vertical absorption and emission energies for several small molecules in solution using the newly developed code are calculated and compared with available experimental data and the results of other theoretical studies. Solvent shifts of absorption and emission energies are reasonably reproduced with this approach. The new model is a promising approach to study nonequilibrium absorption and emission processes in solution.

9.
Phys Chem Chem Phys ; 19(48): 32242-32252, 2017 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-29188829

RESUMO

Nonequilibrium solvation effects need to be treated properly in the study of electronic absorption processes of solutes since solvent polarization is not in equilibrium with the excited-state charge density of the solute. In this work, we developed a state specific (SS) method based on the novel nonequilibrium solvation model with constrained equilibrium manipulation to account for solvation effects in electronic absorption processes. Time-dependent density functional theory (TD-DFT) is adopted to calculate electronic excitation energies and a polarizable continuum model is employed in the treatment of bulk solvent effects on both the ground and excited electronic states. The equations based on this novel nonequilibrium solvation model in the framework of TDDFT to calculate vertical excitation energy are presented and implemented in the Q-Chem package. The implementation is validated by comparing reorganization energies for charge transfer excitations between two atoms obtained from Q-Chem and those obtained using a two-sphere model. Solvent effects on electronic transitions of coumarin 153 (C153), acetone, pyridine, (2E)-3-(3,4-dimethoxyphenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one (DMHP), and uracil in different solvents are investigated using the newly developed code. Our results show that the obtained vertical excitation energies as well as spectral shifts generally agree better with the available experimental values than those obtained using the traditional nonequlibrium solvation model. This new model is thus appropriate to study nonequilibrium excitation processes in solution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...